透過您的圖書館登入
IP:3.144.178.2
  • 學位論文

低能量固態點火晶片用於含能材料觸發裝置之設計與研製

Initiation of Energetic Materials by Low-energy Solid State Igniting Chip

指導教授 : 翁宗賢

摘要


用於含能材料觸發裝置之微機電點火晶片是一種低發火能量、起爆時間短且高可靠性的電起爆裝置,並已實際廣泛的應用於汽車、航空、太空以及國防工業。為了獲知設計電橋之點火時間,本文研製數種新型金屬薄膜電橋,並應用有限元素法模擬以電容放電之能量觸發點火電橋之暫態熱流場,推測引爆時間。 本文應用黃光微影、薄膜沉積、光阻掀舉法和蝕刻法等微機電製程設計與製作點火晶片。利用光敏電阻會隨著光的強弱而改變其電阻值的特性以量測點火晶片之觸燃時間;實驗結果顯示,金屬薄膜之固態點火晶片的電漿產生時間在數個微秒(10e-6 second)之間;金電橋的熔融和汽化時間也同時在電橋的端電壓變化曲線中顯示出來;而有塗佈含能材料(史蒂芬酸鉛)之點火晶片的起爆時間大約是180微秒左右。實驗數據亦與模擬分析結果相當符合,並可作為選用放電電容器最佳化設計的重要參考依據。

並列摘要


MEMS igniting chip is an excellent electro-actuating device to initiate energetic materials with exceptional features of high-stability, low initiating energy, great igniting power, and batch-fabricating capability. Igniting chips are widely applied in automobile, aeronautics, space, medical, and defense industries. In this thesis, several novel metal bridges were designed and fabricated. The transient thermal processes of ignition detonated by charged capacitors were simulated to investigate the igniting time of igniters on the bases of numerical analysis utilizing finite element methods (FEM). A firing bridge of metal film was further deposited on the silicon substrate by a series of lithography, deposition, PR lifting, and etching. The performances of ignitions were measured by photoresistors which responded instantaneously with the explosive light of ignitions. The experimental results demonstrated that the thin-film solid state igniting chips possess capability of microsecond-scale ignition. The melting and evaporating time of golden bridges were also obtained in the measurements. Moreover, the average activating time of igniters with energetic materials was about 180μsec. The experimental data are compared well with the analytical results which provide pertinent bases for choosing proper capacitors to ignite solid bridges.

參考文獻


[9] 邱宏昇, 金屬薄膜點火晶片設計模擬, 國立台灣大學應用力學研究所碩士論文,2004年.
[1] D. A. Benson, M. E. Larsen, A. M. Renlund, W. M. Trott, and R. W. Bickes, Jr., “Semiconductor Bridge: A Plasma Generator for the Ignition of Explosives,” J. Appl. Phys. 62(5), 1 September 1987.
[4] K. N. Lee, M. I. Park, S.H. Choi, C. O. Park, and H. S. Uhm, “Characteristics of Plasma Generated by Poly-Silicon Semiconductor Bridge (SCB),” Sensors and Actuators A: Phys. Vol.96 252-257, 2002.
[5] T. A. Baginski, S. L. Taliaferro, and W. D. Fahey, “Novel Electro-Explosive Device Incorporating a Reactive Laminated Metallic Bridge,” Journal of Propulsion and Power, 0748-4658 Vol.17 184-189, 2001.
[8] H. H. Dibiaso, B. A. English, and M. G. Allen, “Solid-Phase Conductive Fuels for Chemical Micro-Actuators,” Sensors and Actuators A: Phys. Vol.111, 260-266, 2004.

被引用紀錄


陳宜謙(2011)。金薄膜點火頭之起爆能量與升溫狀態模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.00938
林振昇(2010)。抗靜電點火晶片之設計與研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02748
鄭翔聯(2010)。金薄膜點火器之設計與高G值衝擊測試模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.01835
甯煜宗(2008)。微型無閥門熱氣泡幫浦之研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.00065

延伸閱讀