透過您的圖書館登入
IP:3.12.161.161
  • 學位論文

自走式氣浮平台之研製

Development of an autonomous air bearing stage

指導教授 : 范光照

摘要


現在的精密量測平台常利用氣浮軸承達到減低摩擦力的功效,而其推進系統以馬達帶動,如三次元量測儀。其缺點為整體架構大而繁雜,且成本高昂。因此如何利用氣浮軸承本身的氣壓作推動力,並測試其可行性為本論文之主要研究方向。 在本研究中,主要探討結合下噴式及斜噴式氣壓變化之方式作為氣浮軸承及其推進系統,利用比例伺服閥直接針對氣壓作PID調控,並利用雷射干涉儀做位置迴饋感測,可達到自走式氣浮軸承定位平台的功能。 本論文之工作平台可工作範圍為0~220(mm),經過PID控制器的操作控制之後,定位控制可以達到約20µm左右的精度;由此可以觀察到,氣浮軸承利用本身的供氣壓力,即可以取代額外的推進系統,且結合PID控制,可以使氣浮軸承平台做位移上的控制操作,證明了此種推進系統的作動平台是可行性的。

關鍵字

氣浮軸承 移動平台 自走 PID控制

並列摘要


Air bearing linear stage is a common equipment for precision measurement due to its low friction advantage. It, however, needs a driver, such as the motor, to move. The system is complicate and high cost. How to use the air bearing’s pressure to move and test it’s feasibility study is the main goal of this research. In this research, the main focus is to investigate the combination of downward air pressure and variable tilted air pressure for supporting and moving power of the stage. With the proportional valve and PID controller to control the stage motion, and the laser interferometer to feedback the position, it attained autonomous air bearing stage. The designed autonomous air bearing stage has the stroke of 0~200(mm). When controlled by PID controller, the average positioning error is around 20µm. It can be observed that air bearing uses it own supplied air pressure can replace the additional driving components. When using a PID controller and a feedback laser interferometer, it can control the air bearing to move to the desired location. This research demonstrates that the air bearing stage can be moved by its own air pressure at a tilted angle.

並列關鍵字

air bearing moving stage autonomous PID control

參考文獻


[2] M.S. Kang, “Optimal feedforward control of active magnetic bearing system subject to base motion”, IEEE Conference on Control Applications - Proceedings, Vol. 1, 2003, pp. 748-753.
[4] T. Oiwa and R. Suzuki, “Linear rectangular air bearing based on squeeze film generated by ultrasonic oscillation”, journal of Review of Scientific Instruments, Vol. 76, No. 7, Jul. 2005, pp. 075101.
[5] S. Z. Kassab, E. M. Noureldeen and M. Shawky, “Effects of operating conditions and supply hole diameter on the performance of a rectangular aerostatic bearing”, journal of Tribology International, Vol. 30, No. 7, Jul. 1997, pp. 533-545.
[6] K. C. Fan, C. C. Ho and J. I. Mou, “Development of a multiple-microhole aerostatic air bearing system”, Journal of Micromechanics and Microengineering, Vol. 12, No. 5, Sep. 2002, pp. 636-643.
[7] T. S. Luong, W. Potze, J. B. Post, , R. A. J. V. Ostayen and A. V. Beek, “Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors”, journal of Tribology International, Vol. 37, No. 10, Oct. 2004, pp. 825-832.

被引用紀錄


張友倫(2008)。智慧型三次元量測系統之研發〔碩士論文,崑山科技大學〕。華藝線上圖書館。https://doi.org/10.6828/KSU.2008.00011

延伸閱讀


國際替代計量