透過您的圖書館登入
IP:13.59.34.87
  • 學位論文

釕的電沉積研究及過硫酸銨組成的研磨液對釕化學機械研磨之效應

The Electrodeposition of Ruthenium and Effect of Ammonium Persulfate-Based Slurry on Ruthenium Chemical Mechanical Polishing

指導教授 : 顏溪成

摘要


近年來化學機械研磨銅的研究與應用已漸趨成熟,然而銅導線製程常藉由使用阻障層來防止銅擴散入介電層中,目前釕被視為最具潛力的良好阻障層材料,在本研究中,將電鍍於鈦基材上的釕層視為銅導線的阻障層,進而進行Ru化學機械研磨(CMP)之研究。執行釕金屬電鍍的鍍液組成為氯化釕(RuCl3)、鹽酸(HCl)、磺胺酸(NH2SO3H)及聚乙二醇(PEG),使用厚度0.2 mm、直徑12 mm的鈦箔覆蓋於旋轉盤電極之白金,製成鈦基材旋轉盤電極作為工作電極,討論不同的施加電流密度,以及添加及不添加PEG之鍍液進行電鍍,發現添加PEG使表面粗糙度顯著地下降,除此之外,針對電流效率較好之施加電流密度-3.0 mA/cm2與-5.0 mA/cm2下探討轉速效應,以期求出鍍層表面最佳平坦條件,並且比較轉速對電位的變化,發現於-3.0 mA/cm2操作釕電沉積可達最高之電流效率為18.3 %,於最佳之施加電流密度-3.0 mA/cm2配合RDE轉速為900 rpm時,電沉積1191秒,可使鍍層表面達到最佳的平坦度,釕鍍層厚度約200 nm,平均粗糙度僅為11.8 nm。接著使用二氧化矽及過硫酸銨((NH4)2S2O8)組成研磨液,進行在不同pH值下化學機械研磨釕金屬之研究,利用電沉積製備完成之釕薄膜,使用2 wt% (NH4)2S2O8及2 wt% SiO2作為Ru CMP之研磨液主要成份,於不同酸鹼值下執行CMP的結果,綜合比較未施加壓力研磨及施加壓力研磨時,pH值對極化曲線之影響,可看出隨pH值上升,NH3螯合作用漸強,使鈍化轉折現象漸緩,鈍化層的緻密度受螯合作用的效應而漸趨脆弱,施加壓力研磨時,腐蝕電位隨pH值明顯下降,磨後電位降隨pH值上升而上升,尤其於pH 8時,磨後電位降大幅顯著提升,因於鹼性溶液中較易使釕金屬氧化形成不可溶之RuO2•2H2O或Ru(OH)3,未研磨時表面鈍化保護效果較好,因此將鈍化層移除後便使表面狀態大為改變,進而造成磨後電位降提升,而於其他酸性研磨液條件,因釕金屬氧化形成的物質多為可溶性化合物,表面鈍化的效果較不顯著,進而研磨前後腐蝕電位降甚小。此外,可以發現研磨時之腐蝕電流較未研磨時下降,由於RuO4及RuO4-本身具有氧化力,因此在研磨過程可加速使RuO4及RuO4-離開釕金屬表面,另外NH3對於釕氧化物應有螯合的能力,可藉由NH3與機械磨除的釕氧化物錯合,避免其利用本身的氧化力生成鈍化層於釕金屬表面,導致降低釕的化學溶除速率,而且加壓研磨時因受上下板的遮蔽效應影響,使此情況的腐蝕電流量測受到干擾。然而Ru之腐蝕速率及移除速率亦深受化學氧化反應及螯合反應的影響,於pH 6時可達最佳的磨後表面平坦度,表面粗糙度從11.8 nm降為4.7 nm。

並列摘要


The applications of Cu chemical mechanical polishing (CMP) are extensively employed in semiconductor processes. In the Cu CMP process a layer of barrier between Cu and the dielectric layer is necessary, which is for preventing Cu diffusion into dielectrics. Ruthenium (Ru) is considered a good barrier material. In this study Ru CMP has been investigated. First Ru electrodeposition on titanium has been employed as a layer for our CMP study. The solution for the acid-bath ruthenium electrochemical deposition was ruthenium(III) chloride (RuCl3), hydrochloric acid (HCl), sulfamic acid (NH2SO3H), and polyethylene glycol (PEG). The titanium RDE was prepared by replacing the Pt substrate on a RDE by a Ti foil, 0.2mm in thickness and 12mm in diameter. The maximum cathodic current efficiency is 18.3% at -3.0 mA/cm2. At an optimal applied current density of -3.0 mA/cm2 with the RDE speed at 900 rpm, the sample is homogeneous and smooth with a root mean square roughness of 11.8 nm by AFM analysis. The metallic nature of ruthenium thin film is proven by X-ray diffraction. For Ru CMP the slurries containing silica and ammonium persulfate ((NH4)2S2O8) at various pH values have been adopted. Potentiondynamic polarization studies indicate that the corrosion current is enhanced in the presence of ammonia, while the static etch rate remains low. The highest removal rate of Ru is 63.9 nm/min at pH 6. After Ru CMP in (NH4)2S2O8-based slurries at pH 6 the surface roughness could be decreased from 11.8 nm to 4.7 nm.

參考文獻


[1]陳怡秀,“化學機械研磨阻障層鉭與其電化學特性的研究”,台大化工所博士學位論文 (2010)。
[2]F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects,” J. Electrochem. Soc., 138, 3460 (1991).
[3]O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, “Electrodeposition of Copper Thin Film on Ruthenium.” J. Electrochem. Soc., 150, C347 (2003).
[4]F. A. Cotton, Advanced inorganic chemistry, Wiley, New York (1999)
[5]Trevor L. Knutson and William H. Smyrl, “Coulombic Efficiency of lectrodeposited Microspheres of Pt and Pt/Ru Via In Situ Electrochemical Quartz Crystal Microbalance.” J. Electrochem. Soc., 154, B1095 (2007).

被引用紀錄


郭昱汝(2017)。雙氧水系統中銅/釕化學機械研磨之電化學特性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201701550
蔡崇安(2015)。銅/釕化學機械研磨之研磨墊與研磨液的電化學研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.00227
吳怡葶(2014)。銅的腐蝕研究與過硫酸銨研磨液對銅/釕化學機械研磨之效應〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.00036

延伸閱讀