透過您的圖書館登入
IP:18.223.111.118
  • 學位論文

參鍵分子在不同奈米材料上的光譜特性與應用

Spectral Property and Application of Alkyne Molecules in Different Nanomaterial

指導教授 : 江建文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要探討參鍵分子在光譜上的特性,並結合金屬奈米粒子,在表面增強拉曼光譜上進行多樣化的研究。我們設計出可應用在活細胞中的探針以及一系列的可細微調控的光譜,以期在未來可應用在多樣化的生物偵測上。 奈米粒子在拉曼光譜上有很好的訊號增強效果。此外,在2,100 cm-1左右的範圍較不易受到生物分子的干擾,但含有參鍵的分子在此區域卻有明顯的訊號。我們結合此兩種特性,研究奈米粒子與參鍵分子的交互作用及光譜特性。 在第二章,我們分別利用不同材料的特性,來設計一個具有選擇性及靈敏度高的探針,用來偵測髓過氧化酶(Myeloperoxidase, MPO)催化H2O2的氧化反應,並將其應用在活細胞中。在此探針中,我們利用TiO2與Au的電荷轉移效應(Charge Transfer)以及光誘導增強效應(Photoinduced Enhancement)來增強拉曼訊號,並利用含參鍵的分子來當作鑑定探針形成及MPO偵測反應的條件。最後,我們透過暗場顯微鏡、表面增強拉曼光譜以及光誘導增強拉曼光譜三種光譜圖來觀察奈米探針TiO2/Au/Alkyne-Tyr在活細胞中的反應,發現此探針對於發炎細胞是具有選擇性的。 在第三章,我們將不同莫耳比例的金銀合金奈米粒子與不同同位素修飾的參鍵分子結合,在拉曼光譜上,會產生明顯的紅位移。我們進一步將奈米粒子及參鍵分子放在單層及多層的石墨烯上,亦會造成紅位移現象。透過簡單小分子與不同奈米材料結合產生的多個位移現象,組合成一系列的可調控光譜,我們相信未來有潛力應用在多樣化的生物感測上。

並列摘要


This thesis mainly discusses the spectral properties of the alkyne molecules, and combines with metal nanoparticles to conduct diversified research on Surface Enhanced Raman spectroscopy. We have designed probes that can be used in living cells and can create a series of fine-tuning spectra, with a view to applying them to diverse biological detections in the future. Nanoparticles have a good Raman signal enhancement effect by surface plasmon resonance. In addition, alkyne molecules have an obvious Raman signal around 2,100 cm-1, which is less susceptible to interference by biomolecules. We combine these two characteristics to study the interaction and spectral property of nanoparticles and alkyne molecules. In the second chapter, we use the characteristics of different materials to design a selective and highly sensitive probe to detect the myeloperoxidase(MPO)-catalyzed oxidation for H2O2, and apply it to in living cells. In this probe, we use the charge transfer effect of TiO2/Au and Photoinduced Enhanced Raman (PIER) to enhance the Raman signal, and utilize the alkyne molecule as the identification. Finally, we observed the response of the nanoprobe TiO2/Au/Alkyne-Tyr in living cells through dark field microscope (DFM), PIER, SERS, and found that this probe has the selectivity for inflammatory cells. In the third chapter, we synthesized different molar ratio of gold-silver alloy nanoparticles, and combined them with different isotopically modified alkyne molecules. It shows a significant red shift in the Raman spectrum. We further put nanoparticles and alkynes on single-layer and multi-layer graphene, which will also cause an obvious red shift. We believe that there is potential for future applications in biological sensing.

並列關鍵字

SERS nanoparticles alkyne graphene nanoprobe

參考文獻


1. McCreery, R. L., Raman spectroscopy for chemical analysis. John Wiley Sons: 2005; Vol. 225.
2. Raman, C. V.; Krishnan, K. S., A new type of secondary radiation. Nature 1928, 121 (3048), 501-502.
3. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. Cengage learning: 2017.
4. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 2016, 13 (118), 20160182.
5. Strommen, D. P.; Nakamoto, K., Resonance raman spectroscopy. Journal of Chemical Education 1977, 54 (8), 474.

延伸閱讀