透過您的圖書館登入
IP:18.191.195.110
  • 學位論文

燃料電池混合電動車之能量管理優化技術

Optimization in Energy Management of Fuel-Cell Hybrid Vehicle Systems

指導教授 : 林巍聳
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文的目標是求解燃料電池混合電動車的能量管理問題,此燃料電池混合電源包含一套以氫氣為燃料的質子交換膜燃料電池和一套由超級電容器構成的儲能系統,我們設計了一個多源直流對直流轉換器把燃料電池系統、儲能系統和電動車的馬達變頻器連結成完整的電動車混合電源系統,並且發展出一套自調最佳控制演算法使電動車能夠在行駛於標準測試路線的時候自動優化能量管理策略。燃料電池混合電源的各項組成單元可以歸納為電壓電流控制迴路和能量管理迴路,電壓電流控制迴路負責調節多源直流對直流轉換器的輸出電壓,我們設計了一個逆向滑模控制器來控制多源直流對直流轉換器,使其在負載與可用電能劇烈變動的環境下仍然能夠在輸出端維持高品質的電功率。能量管理迴路則利用自調最佳控制演算法蒐尋最佳能量管理策略,使各個電源單元能夠分擔適當的電功率需求,同時把儲能系統保持在隨時可用的儲能狀態,隨時可以提供緊急電功率或吸收再生電能,燃料電池因此可以持續保持穩定且高效率的操作狀態。本論文建立了一套數值模擬平台來驗證各項設計,最終的設計則成功的製作成一套實驗系統,檢視各項數值模擬和實驗結果之後,可以確信自調最佳控制演算法結合多源直流對直流轉換器,可以明顯的提昇燃料電池混合電源的能源效率,又同時可以提供充足的電功率給電動車。

並列摘要


This dissertation focuses on the energy management problem of a Fuel Cell Hybrid Power Source (FCHPS) supplying an electric vehicle. The FCHPS comprises a proton exchange membrane fuel cell system and an energy storage system formed with a bank of electric double-layer capacitors. The fuel cell system, energy storage system and traction motor inverter are connected together by a multi-source DC/DC converter. We contribute to design the multi-source DC/DC converter and an adaptive optimal control algorithm for searching for the best energy management strategy through reinforcement learning in variant driving cycles. The relevant components are organized in a voltage-current control loop and an energy management loop. The voltage-current control loop is responsible for regulating the output voltage of the multi-source DC/DC converter in response to load demand and permissible power supply. A backstepping sliding mode controller is constructed to achieve voltage regulation in the multi-source DC/DC converter system under variant conditions and noisy measurements. The energy management loop makes use of the adaptive optimal control algorithm to find the best strategy for power split among distinct power sources while balancing the state of charge of the energy storage system. Consequently, the FCHPS can retain the fuel cell system operating in an efficient, stable manner while utilize the energy storage system to supply urgent demand and capture regenerated energy. A computational simulation platform has been built and used to generate extensive simulation results for confirming the proposed design. The final design has been successfully implemented in an experimental system. The results of simulations and experiments confirm that the adaptive optimal control algorithm in association with the multi-source DC/DC converter can significantly enhance the energy efficiency of the FCHPS while supplying sufficient power to an electric vehicle.

參考文獻


Al-Tamimi, A., F. L. Lewis, et al. (2008). "Discrete-Time Nonlinear HJB Solution Using Approximate Dynamic Programming: Convergence Proof." IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics 38: 943-949.
Alvarez-Ramirez, J., G. Espinosa-Perez, et al. (2001). "Current-mode control of dc-dc power converters: a backstepping approach." Proceedings of the 2001 IEEE International Conference on Control Applications: 190-195.
Andersson, T., J. Groot, et al. (2003). "Alternative Energy Storage System for Hybrid Electric Vehicles." Department of Electric Power Engineering Chalmers University of Technology, Master of Science Thesis.
Baisden, A. C. and A. Emadi (2004). "ADVISOR-Based Model of A Battery and An Ultra-Capacitor Energy Source for Hybrid Electric Vehicles." IEEE Transactions on Vehicular Technology 53(1): 199-205.
Barto, A. G. and e. al. (1983). "Neuron-Like Adaptive Elements that can Solve Difficult Learning Control Problems." IEEE Transactions on System, Man and Cybernetics: 834-846.

被引用紀錄


蔡忠庭(2016)。前置雷達電動車之自優化適應性巡航控制器〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600927
李佩蓉(2015)。最佳自動調諧模糊PID控制器在生物反應器之應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01515

延伸閱讀