透過您的圖書館登入
IP:3.137.170.183
  • 學位論文

染料敏化太陽能電池元件結構及新型有機染料之研究

Investigation of Device Structures and Novel Organic Dyes for Dye-Sensitized Solar Cells

指導教授 : 吳忠幟
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於染料敏化太陽能電池具有元件結構及製作相對簡易、材料成本低廉,且光電轉換效率良好等優點,目前已經成為太陽能電池研究課題中的重要方向之一。染料敏化太陽能電池基本結構包含了透明導電基板、奈米多孔性二氧化鈦薄膜工作電極、染料、電解質、以及白金對電極等五個部分,每個部分對元件整體效率皆有極重要的影響。本論文針對染料敏化太陽能電池中的透明導電基板、奈米多孔性二氧化鈦薄膜工作電極以及新型有機染料進行了有系統的研究與分析。 本論文首先探討了氟摻雜氧化錫透明導電基板的表面紋理結構對染料敏化太陽能電池元件效率的影響。我們對六種不同的透明導電基板進行了表面形貌與光電特性量測,將具有不同紋理結構與霧度的透明導電基板應用於染料敏化太陽能電池元件中,並對染料敏化太陽能電池元件,進行電流-電壓曲線、光譜響應曲線以及電化學阻抗頻譜量測,且比較不同紋理結構透明導電基板對元件效率的影響。 接著,本論文分析了不同結構的奈米多孔性二氧化鈦薄膜工作電極對染料敏化太陽能電池元件效率的影響。我們對五種不同顆粒大小的二氧化鈦奈米顆粒進行了表面形貌、光學穿透率與霧度等量測。並使用此五種不同大小的二氧化鈦奈米顆粒,搭配組合成二十種不同結構的奈米多孔性二氧化鈦電極,應用於染料敏化太陽能電池元件中。對各種染料敏化太陽能電池元件,進行了電流-電壓曲線、頻譜響應曲線以及電化學阻抗頻譜量測,且比較不同結構的奈米多孔性二氧化鈦薄膜電極對元件光電轉換效率的影響。 最後,我們研究了三類的新型有機染料,對此三類的新型有機染料進行了完整且系統性的光物理特性分析,並將這三類新型有機染料應用於染料敏化太陽能電池元件中,進而量測元件的電流-電壓曲線、頻譜響應曲線以及電化學阻抗頻譜,並探討此三類新型有機染料分子在染料敏化太陽能電池元件光電特性上的表現。

並列摘要


Dye-Sensitized Solar Cells (DSSCs) offer the advantages of simple structures, easy manufacturing, low cost, and high power conversion efficiencies. Therefore, DSSCs have become one important area of solar cell researches. Dye-Sensitized Solar Cells generally consist of transparent conductive substrates, nanoporous TiO2 working electrode, dye, electrolyte, and a platinum counter electrode. Each part of the cell has crucial effects on overall cell efficiency. This dissertation conducted a systematic investigation on the transparent conductive substrates, nanoporous TiO2 working electrode, and novel organic dyes for DSSCs. First, we studied how the texture structures of various fluorine-doped tin oxide (FTO) transparent conductors influence the power conversion efficiency of DSSCs. Measurements of surface morphology and electro-optical properties were conducted for different kinds of FTO transparent conductors, each having a different texture structure and haze ratio. Effects of these transparent conductors on current density-voltage (J-V) curves, incident photo-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) analysis of DSSCs were analyzed. Device performance parameters based on these different textured FTO conductors were then compared. Next, the effects of various TiO2 nanoparticle working electrodes on DSSCs were studied. Measurements of surface morphology, optical transmittance, and haze ratio were conducted for TiO2 nanoparticles of different sizes. These TiO2 nanoparticles were combined in twenty different ways for DSSCs. The J-V curves, IPCE curves, and the EIS analysis of different DSSCs were analyzed to study how nanoporous TiO2 electrodes of different structures influence the DSSC efficiency. Finally, three types of novel organic dyes were investigated for DSSC. Comprehensive photophysical characterization of these dyes and their applications to DSSCs were conducted. The J-V curves, IPCE curves, and the EIS of device performance parameters of DSSCs based on these novel organic dyes were thoroughly analyzed to manifest their potential.

參考文獻


Chapter 1
[2] BP Statistical Review of World Energy British Petroleum (2006).
[5] N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 46 (2007) 62.
[6] N. S. Lewis, Science 315 (2007) 798.
[9] Basic Research Needs for Solar Energy Utilization, 2005.

延伸閱讀