透過您的圖書館登入
IP:3.149.29.112
  • 學位論文

高溫逆境下不同水稻品種之生理反應及蛋白質表現

The physiological response and protein expression profile of different rice (Oryza sativa L.) cultivars under high temperature stress

指導教授 : 張孟基

摘要


溫度為影響水稻栽培與生產之重要因子。台灣地區常因夏季高溫導致一期作水稻不稔,充實率及產量降低;二期作水稻分蘗減少影響產量。若能了解水稻品種與高溫耐受性之關係,將有助於高溫逆境下之水稻栽培及育種。本試驗選用22個不同秈、稉型水稻品種,先進行高溫逆境下外觀變化及四種生理指標之測定,結果顯示秈稻對高溫之耐受性普遍較稉稻佳。於高溫處理(45℃, 4小時)下,秈或稉稻之葉綠素螢光測定值皆降低,電導度則因膜系破壞而增加,但葉綠素含量及脂質過氧化則無明顯差異。若高溫處理後再行回溫二天,較不耐高溫的稉稻皆顯現明顯病徵,表示高溫逆境會直接影響細胞膜穩定性及光合作用PS II效率,並於回溫處理後產生光氧化逆境,因此水稻對於高溫逆境之耐受與否,可能與回溫處理後細胞回復及降低氧化逆境之能力有關。本實驗從上述品種選擇具高溫敏感性水稻—台農67號(TNG67)及高溫耐受性水稻—台中秈10(TCS10)進行一維及二維蛋白質電泳分析,以了解不同高溫耐受性水稻品種於高溫處理下蛋白質表現之差異。一維蛋白質電泳的結果顯示,不論秈稻或稉稻,在高溫處理下,其葉部皆會誘導60kDa蛋白質之表現,根部則否。以西方式墨點法證實,高溫處理下TCS10根部具有較多之低分子量熱休克蛋白質(small heat shock proteins, sHSPs),且這些sHSPs於回溫二天後仍存在。進一步以二維蛋白質電泳探討哪些蛋白質可能與高溫耐受性有關,結果發現高溫逆境下會誘導諸多蛋白質,如: sHSPs、SEC protein、wall-associated protein kinase、proline-rich protein、peroxin 6及ACC synthase之表現。推測高溫處理下,可能促使蛋白質磷酸化、熱休克蛋白質累積、誘導分泌路徑相關蛋白質及乙烯生合成。此外,mannose-binding rice lectin的表現量在TCS10會受高溫處理而抑制,但在TNG67則不論對照組或高溫處理表現量都很低,具有品種間差異,經過比對後發現此mannose-binding rice lectin與受鹽分逆境誘導的salT基因有高度相似性,可能與高溫逆境之耐受性有關。

關鍵字

蛋白質體學 生理 高溫逆境 水稻

並列摘要


In Taiwan, high temperature causes the reduction of tiller number and spikelet sterility in rice plants thus affects the final yield and grain quality. Our objective is to determine the physiological response and protein expression profile of different rice cultivars under high temperature stress. Ours data showed that after 4hr of 45℃ heat treatment than recovered at 30/25℃ for 2 days caused rice seedlings decrease in chlorophyll content, chlorophyll fluorescence, and a marketed increase in leakage, MDA content. The indica rice tends to be more thermotolerant than japonica rice according to the change of morphological symptoms and physiological assay. Among 22 rice cultivars, a high temperature sensitive cultivar(Tainung 67, TNG67)and high temperature tolerant cultivar(Taichung Sen 10, TCS10)were selected for further use in study of heat stress tolerance by SDS-PAGE and 2-D electrophoresis. The result showed that either japonica or indica rice, a 60kDa protein was induced in leaf but not in root tissue under high temperature treatment. The western blot analysis also showed high temperature tolerant cultivar(TCS10)expressed more LMW sHSPs under heat stress. With 2-D gel analysis, several proteins which up-regulated by high temperature in ether TCS10 or TNG67 were identified, including:sHSPs, SEC protein, wall-associated protein kinase, peroxin6 and ACC synthase. The function of these proteins may be correlated with thermotolerance by protein phosphorylation、HSP accumulation、protein membrane transport、ethylene biosynthesis. Interesting enough, one of the protein, mannose-binding rice lectin(MRC)is down-regulated by heat stress in TCS10 and expressed in low level in TNG67 either with or without high temperature treatment. After protein database search, this cultivar-specific expressed protein shows highly similarity to salT gene which is induced by salt. The function of this protein may correlate to thermotolerance of rice.

參考文獻


Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H(2002)Proteome analysis of differentally displayed proteins as a tool for investigating ozone stress in rice(Oryza sativa L.)seedlings. Proteomics 2: 947-959
Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A(2003)Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51:543-553
Al-Khatib K and Paulsen GM(1999)High temperature effects on photosynthetic processes in temperature and tropical cereals. Crop Science 39: 119-125.
Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Ann Rev Plant Physiol Plant Mol Biol 37: 93–136
Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46: 129–139

延伸閱讀