透過您的圖書館登入
IP:3.15.171.202
  • 學位論文

三苯胺及咔唑衍生物與不同比例聚乙二醇的共聚氨酯高分子合成及其於鈣鈦礦太陽能電池應用上之研究

Synthesis and Characteristics of Polyethylene Glycol Copolymer Using Triphenylamine and Carbazole Derivatives for Perovskite Solar Cells

指導教授 : 謝國煌

摘要


本研究乃合成以三苯胺(Triphenylamine)和咔唑(Carbazole)的衍生物為單體和不同分子量的聚乙二醇(Polyethylene glycol)形成聚氨酯,利用具有良好電洞傳輸能力的三苯胺小分子,以及有著不錯的電洞傳導能力且具有相對較高最高填電子軌域能階(HOMO)的咔唑小分子,將其改質成二醇小分子並合成聚氨酯高分子,將其優秀的成膜性應用在元件的電洞傳遞層,再透過聚乙二醇和聚氨酯材料共聚,利用其優秀的離子傳遞性,進而提升鈣鈦礦太陽能電池元件的光電流(Photo-current)、開環電壓(Open-Circuit voltage)及填充因子(Fill factor),並提高光電轉換效率(Power conversion efficiency, PCE)。並將其鈣鈦礦太陽能電池電洞層之傳遞材料 本研究利用示差熱掃描分析儀(Differential scanning calorimetry, DSC)分析所合成之高分子化合物的熱性質,確保其能夠因應太陽能電池元件製作中的各種製程;利用紫外光/可見光分光光譜儀(UV/Visible spectroscopy, UV-Vis)測量高分子在紫外光-可見光區的吸光範圍及強度,藉以瞭解高分子化合物之吸光範圍,並從溶液薄膜態的差別去探討成膜的好壞;利用循環伏安儀(Cyclic voltammetry, CV)測量高分子的氧化電位以及最高填電子軌域能階,測試其能階是否落在陽極電極和主動層之間,並探討在高分子中導入聚乙二醇共聚對能階的影響。 太陽能電池元件部分,首先嘗試了將共聚氨酯混合在主動層的效果,接著分別比較了三苯胺系列及咔唑系列和不同分子量聚乙二醇應用在元件的效果,探討不同分子量聚乙二醇以及小分子單體對於元件效率的影響;最後使用實驗室之前嘗試在主動層摻入1%的三乙烯四胺(Triethylenetetramine)聚氨酯,當乙二醇平均分子量為200和咔唑小分子衍生物共聚氨酯去取代電洞傳遞層時,有最好的元件效率,可達到 9.23 %,比標準元件的對照組提升了 27.1 %。

並列摘要


In this study, the diol derivatives of Triphenylamine(TPA) and Carbazole were successfully synthesized and polymerized into polyurethane, then co-polymerized with Polyethylene glycol of various average molecular weights to form copolymers. Triphenylamine molecule is widely used in hole transporting material due to its excellent hole-transporting ability; Carbazole molecule has good hole-transporting ability and relatively higher Highest occupied molecular orbital (HOMO); Ethylene glycol can increase the ion transporting ability. To use these copolymers as hole transport materials in perovskite solar cells is expected to lead to the increase of photocurrent, open-circuit voltage, fill factor, and the power conversion efficiency. To make sure the synthesized copolymers can go through all the manufacturing process of perovskite solar cells, Differential scanning calorimetry (DSC) is used to test the glass transition temperature of them. UV/Visible spectroscopy (UV-vis) helps us know their light-harvesting ability. We can also compare the solution forms with film patterns to analyze the packing and film-forming ability. Cyclic voltammetry (CV) tells us the oxidation potential and the energy level of these copolymers, which can help us check that the material lies on the correct energy level. For the part of perovskite solar cell device, the copolymer of TPA is first mixed into the active layer. Next, the Spiro-OMeTAD in hole-transport layer is replaced by the PU copolymers. The effect of different average molecular weight of PEGs is then to be discussed. When the average molecular weight of PEG comes to 200, we get the best power conversion efficiency. Finally, the highest power conversion efficiency reaches 9.23 % with active layer blended with PU and Carbazole PU as the hole-transporting material, which is 27.1 % higher than the standard perovskite solar cell.

參考文獻


1. BP Statistical Review of World Energy 2010
3. International Energy Agency (IEA), “World Energy Statistics” (Paris: Organisation for Economic Co-operation and Development (OECD)/IEA, 2013)
5. REN21 the Renewable Energy Policy Network for the 21st Century REN21 10 Year Report
6. D. M. Chapin, C. S. Fuller and G. L. Pearson, "A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER," Journal of Applied Physics, 676-677 (1954).
7. A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38), 565-572 (2011).

延伸閱讀