對於燃料電池而言,儲氫技術乃為可否廣為應用之關鍵技術之一,儲氫技術主要分為六大類,一、高壓氫,二、液態氫,三、高表面吸附劑,四、奈米碳管,五、金屬氫化物,六、化學氫。相對於其他五種產氫技術,化學氫具高重量密度與體積小之優點。硼氫化鈉為重要之化學儲氫材料之一,其儲氫效率與轉化氫效率極高,且可藉由觸媒催化提升其生成氫氣效率。故硼氫化鈉應用於燃料電池化學氫之研究,一直廣為科學家所探討。 本研究之重點乃著重於奈米白金/金屬氧化物複合觸媒之合成與特性分析,探討最佳條件使硼氫化鈉產生氫氣速率增加。本研究並利用同步輻射之X光源配合反應系統之設計,探討硼氫化鈉提供燃料電池所須氫氣之反應機制,並研究觸媒於反應過程中影響其特性之關鍵因素,此舉將有助於開發更具效率與更經濟之儲氫系統。 本研究乃藉由數種分析技術探討化學氫反應之特性與觸媒催化反應機制。其中所涵蓋之方法包括:以X光粉末繞射法(X-ray diffraction;XRD) 鑑定樣品之純度與分析其晶體結構;以穿透式電子顯微鏡(transmission electron microscopy;TEM)進行樣品表面形態與粒徑大小分布;以X光吸收光譜(X-ray absorption spectroscopy;XAS)之X光吸收邊緣結構(X-ray absorption near edge structure;XANES)決定樣品中元素之價數與電子結構以及延伸X光吸收精細結構(extended X-ray absorption fine structure;EXAFS)瞭解吸收原子周圍之原子級短程有序結構;以感應耦合電漿-原子發射光譜儀(inductively coupled plasma-atomic emission spectrometer;ICP-AES)鑑定含浸於載體上之白金量。
As to fuel cell, it is one of the key technology that could be used far and wide to store hydrogen technology , store hydrogen technology and is divided into six classes mainly, first, High-pressure gas cylinders, second, liquid hydrogen, third, high surface absorbent, fourth, carbon nanotube, fifth, metal hydride, sixth, chemical hydrogen. The chemical hydrogen has the high density of weight and low volume. The sodium borohydride turn into important chemistry and store one of the hydrogen materials, it stores hydrogen efficiency and transform hydrogen extremely high, and can improve it and turn into hydrogen efficiency with the catalyst catalysis. So it was wide to discuss for scientist about sodium borohydride applying fuel cell chemical research of hydrogen. In order to increase the rate of hydrogen generation, we will focus on studing Nano-sized Platinum/Metal Oxide Complex Catalyst in Chemical Hydride Hydrolysis Reaction. We will also investigate the mechanism of hydrogen generation by using synchrotron radiation facility. It will be helpful for developing more efficient and cheaper hydrogen storage system. The related applications of this study can be used in livelihood and military affairs, so as to solve power crisis. The study has done XRD to prove the crystal structure and purity of catalyst. TEM characterization techniques have been employed to study the morphology, particle size and dispersion. X-ray absorption spectroscopy by using synchrotron radiation is used for studying oxidation number and fine structure. It showed the platinum content supported on lithium cobalt oxide by ICP-AES.