透過您的圖書館登入
IP:3.133.86.172
  • 學位論文

新型高分子/氧化矽混成材料之製備及其光學薄膜之應用

Preparation of New Type Polymer/Silicon Oxide Hybrid Materials and Their Optical Thin Film Applications

指導教授 : 陳文章

摘要


傳統有機高分子材料在熱性質與機械性質上較不如無機材料,近年來以無機材料混入有機材料中結合兩者性質的有機無機混成材料逐漸受到重視,而有機無基混成材料具有較佳的熱性質與光學性質,而有在光學材料上的應用性。在此研究中分別探討聚乙烯倍半矽氧烷與壓克力混成系統、聚倍半矽氧烷與聚亞醯胺混成系統在光波導材料上的應用及離子鍵結型光敏感型聚亞醯胺材料低收縮性質的探討。 以聚乙烯倍半矽氧烷寡聚物與壓克力材料混成,預期藉由乙烯基與壓克力機進行自由基聚合產生化學鍵結提升材料性質。首先以溶膠凝膠法聚合聚乙烯倍半矽氧烷,由研究結果得知聚合系統中酸度與水量可用來調控寡聚物聚合度與化學結構,高的酸度與水量會提高系統反應程度,低的酸度與高的水量則會增加系統中籠狀結構的比例,而聚乙烯倍半矽氧烷/壓克力混成材料與純壓克力材料相較其熱性質有些微的提昇,然而由共聚反應速率比計算結果推論聚乙烯倍半矽氧烷與壓克力間的反應性並不高,但系統中聚倍半矽氧烷的O-H與C=O基團之間的物理性作用力卻能降低有機相與無機相之間相分離的情形而沒有增加混成材料中的光傳損失,因此混成材料光傳損失值在1310nm波長下約為0.62 ~0.79 dB/cm,1510nm波長下約為0.46 ~0.64 dB/cm,混成材料折射率隨著聚乙烯倍半矽氧烷增加而降低,混成材料的折射率進而可被調整而於光學材料有應用潛力。 聚亞醯胺以胺基烷基矽烷封端苯均四酸二酐與甲基聚倍半矽氧烷混成,矽氧無機相的量與聚亞醯胺鏈段長度影響無機相聚集程度,而適當的控制混成系統相分離規模大小後所得材料在熱膨脹係數上有所降低,材料折射率隨聚倍半矽氧烷比例提高而降低,同時聚亞醯胺材料的等向性在混成後提高而使雙折射率降低。離子鍵結型光敏感聚亞醯胺材料具有亞醯胺化時體積熱收縮的缺點,以MAPSSQ與聚亞醯胺混成,期望能同時改良材料的熱性質與光電性質,同時以MAPSSQ的壓克力有機官能基與感光基MDAE反應而提高感光基裂解溫度而降低材料收縮,在結果中混成薄膜收縮由50%降至30%左右,以XPS元素分析材料中並沒有明顯的看到感光基MDAE上的氮原子,但混成材料的熱裂解溫度較非光敏感型材料低,少數的感光基可能被留下而降低材料的收縮。以此光敏感型材料進行曝光顯影,可以得到線寬40μm,線高3μm的微影圖案。因此此類材料可有製備通道波導之潛力。

並列摘要


The thermal properties of organic polymer materials are generally poor in comparison with the inorganic material. Hybridization of inorganic materials into organic materials offers the possibility to enhance their physical properties and may become new kind of optical materials. In this study, two kinds of hybrid materials were synthesized and characterized, including poly(vinylsilsesquixane) (VSQ)/acrylate and poly(silsesquioxane) (PSSQ)/polyimide hybrid system. For the case of VSQ/acrylate materials, poly(vinylsilsesquioxane) (VSQ) was synthesized by sol-gel method. It was found that the chemical structures of the VSQ could be controlled by acid or water amount, including molecular weight and cage/network ratio. Higher acid and water amounts increase the degree of polymerization. On the other hand, lower acid and higher water amounts increase the cage structure of precursor. Thermal properties of hybrid materials are slightly enhanced by hybridizing VSQ. However, poor reactivity is found between the VSQ and MMA based on the analysis of FTIR, SEC, or reactivity ratio. But the hydrogen bonding is existed between OH of VSQ and C=O of PMMA and thus prevents the macrophase separation. Optical loss of VSQ/MMA hybrid thin film is 0.62 ~0.79 dB/cm and 0.46 ~0.64 dB/cm at 1310 and 1510nm, respectively. They are acceptable values for waveguide applications. Besides, refractive index of hybrid thin film decreases with the VSQ content increased. Thus, the tunable optical properties make the prepared hybrid materials potentially for optical device applications. Polyimides (PMDA-ODA) encapped with aminopropyl trimethoxysilane (APrTMOS) was used to prepare hybrid materials with PSSQ. It was found that both PSSQ content and polyimides chain length affected the degree of phase separation. Appropriate control the phase separation behavior, the hybrid materials possess lower coefficient of thermal expansion (CTE) with increasing PSSQ content. The optical properties could also be adjusted by the ratio of hybrid materials. Birefringence of the polyimides/PSSQ hybrid materials is reduced in comparison with the parent polyimides because the molecular isotropy increases. MADE is added to the polyimide/PSSQ hybrid system for fabricating ionic-bonded photosensitive organic-inorganic hybrid material. Methacrylic propyl silsesquioxane (MAPSSQ) with a acrylic functional group was expected to react with MDAE for reducing the volume shrinkage during thermal imidization. It was found that by hybridizing MAPSSQ into polyimide lowered the shrinkage from 50% to 30% in comparison with the parent polyimide. Although nitrogen atom of MDAE in imidized hybrid material can not be clearly observed from XPS element analysis, the TGA analysis suggests that the MDAE remained in the hybrid films after thermal imidization. The prepared hybrid materials could be patterned by photolithography and might be used in optical channel waveguides.

參考文獻


3. Sharp, K.G. Adv. Mater. 1998, 10, 1243.
4. Wen J.; Wilkes, G.L. Chem. Mater. 1996, 8, 1667.
J.M.; Teowee, G.; Uhlmann, D.R. J. Non-Cryst. Solids
1994, 178, 31.
J.M.; Teowee G.; Uhlmann, D.R. J. Non-Cryst. Solids

被引用紀錄


楊子慧(2007)。環氧樹脂/聚有機矽氧烷奈米複合材料之合成與性質研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0210200715263854

延伸閱讀