透過您的圖書館登入
IP:18.116.40.47
  • 學位論文

高溫促進綠竹生長、出筍及壓條育苗之發根

High Temperature Promoting the Growth, Shooting and Air-Layer Rooting of Green Bamboo (Bambusa oldhamii Munro )

指導教授 : 曹幸之
共同指導教授 : 林宗賢(Tzong-Shyan Lin)

摘要


利用無嵌紋病毒綠竹於人工氣候室及綠竹園進行栽培、壓條,分別探討促進綠竹(Bambusa oldhamii Munro)生長、出筍及壓條發根之溫度範圍。將無嵌紋病毒綠竹壓條苗盆栽,分別置於人工氣候室以日/夜溫35/30℃、30/25℃、25/20℃、20/15℃、15/13℃五種處理及露地無溫控之塑膠棚簡易設施內栽培,試驗期間自2004年3月至2005年1月。結果顯示,綠竹桿、枝及葉的生長在15/13℃至30/25℃範圍內與溫度呈正相關。竹桿長度生長與時間的關係呈現S形曲線模式。枝條在竹桿生長後10週萌出,竹枝長度的生長速率隨溫度提高而增加。每叢枝條數及每枝條著生葉數於溫度25/20℃以上之各處理間相似。平均每枝條葉數為8片,溫度25/20℃以上時竹葉長度、每叢葉數與葉面積相近,葉之生長速率在35/30℃處理較快。首次出筍所需日數隨溫度增加而遞減,在30/25℃及35/30℃處理平均需時45.3〜48.8日。出筍數隨溫度提高而增加,以30/25℃處理的12.3 支/叢最多。35/30℃處理有較高退筍率,達34.9%,25/20℃處理的退筍率最低,約16.6%。綠竹出筍速率與平均溫度之間,呈二次曲線迴歸模式的關係(Y=-0.000049X2+0.0028X-0.0186,r2=0.96),於28.8℃有最大出筍速率,自植株定植至出筍所需的積熱約1230 degree-day。葉片之葉綠素計讀值以15/13℃與20/15℃低溫處理最高,其葉片顏色較高溫處理者深綠。於連續晴朗日測定成熟葉片的淨光合作用速率,以35/30℃處理最高,達6.93 μ mol m-2s-1,其次為30/25℃及常溫下。氣孔導度與蒸散速率與淨光合作用的趨勢相同,都以較高溫度處理有較大數值。鮮葉中葡萄糖與澱粉含量,隨溫度提升而增加,但35/30℃時反明顯降低。溫度25/20℃以上的各處理,植株的總生物產量最高,介於650∼736公克/叢,其中約6.5∼7.2%為鮮葉,7.7∼9.0 %為落葉,桿枝佔41.5∼44%,地下莖約佔12∼13.7%,根部佔28.3∼29.5%。綠竹落葉置換量與生成的新葉量相近。全株總含水量介於44.3%∼48.3%,以15/13℃處理較低。各部位營養元素含量,在鮮葉依序為N>K>Ca>Mg>P,而枝桿與根部的次序則為K>N>Ca>Mg>P,各營養成分均以鮮葉的含量較高,枝桿次之,根部較低。綠竹壓條之發根率與平均溫度間呈一次線性迴歸模式(Y=4.835X-73.51,r2=0.90),其中月均溫高於26.8℃的6-9月,進行壓條的發根率可達61∼76%,不受壓條桿徑、枝徑的影響,顯示壓條發根率主要受溫度的影響。竹桿下部節位的發根率較竹桿上部高10%,但高溫下竹桿部位間的壓條發根率差異不顯著。壓條前去除枝葉可誘發不定根的生成而提高發根率,枝條遮蔭處理則會降低發根率。

關鍵字

綠竹 溫度 生長 出筍 壓條法

並列摘要


The temperature effects were studied on green bamboo (Bambusa oldhamii Munro) on its growth and shooting, and air-layering rooting in phytotron and bamboo mosaic virus-free green bamboo plantation, respectively. The growth and shooting of green bamboo layers were studied under six temperature treatments, five (D/N 35/30℃, 30/25℃, 25/20℃, 20/15℃ and 15/13℃) at phytotron and one uncontrolled at a plastic tunnel from Mar. 2004 to Jan. 2005. The results showed that the growth of culm, branch, and leaf was positively correlated with temperatures between 15/13℃ and 30/25℃. The green bamboo thrives in warm temperature. The culm height showed a S type growth curve. Branches emerged and started to grow about ten weeks after culm growth, and the growth rates were positively correlated with temperatures. No significant difference in branch number per clump and leaf number per branch were found in plants grown under temperatures of 25/20℃ and higher. The average leaf number per branch was eight. Plants under these higher temperatures had similar leaf length, leaf number per clump, and leaf area. Higher leaf growth rate was obtained at 35/30℃. The days to first shooting reduced with temperature increase. It took 45.3-48.8 days to first shooting with plants grown at 30/25℃and 35/30℃. The number of shoots increased under higher temperature. It was 12.3 shoots per clump for plants grown at 30/25℃. The highest abortion rate of shooting, 34.9% occurred at 35/30℃, and the lowest of 16.6% at 25/20℃. A curvilinear regression model (Y=-0.000049X2+0.0028X-0.0186,r2=0.96) depicted the relationship between the shooting rate and mean temperatures. The largest shooting rate was reached at 28.8℃. The thermal-time was 1230 degree-day for green bamboo shooting. The chlorophyll meter reading was highest at 15/13℃ and 20/15℃. The net photosynthetic rate taken on mature leaf was the highest 6.93 μ mol m-2s-1 at 35/30℃, and plants grown at 30/25℃ and control followed the next. The results of stomatal conductance and transpiration rate followed similar trend to the net photosynthetic rate. The concentrations of glucose and starch in fresh leaves increased with temperature up to 30/25℃. Plants grown at temperature above 25/20℃ produced in a year the total dry weight of 650-736 g per clump, with proportion of 6.5-7.2% in current leaves, 7.7-9% in litter leaves, 41-44% in culm and branch, 12-13.7% in rhizome, and 28-29% in roots. Plant water content ranged between 44.3∼48.3% with the lowest in treatments of 15/13℃. The concentrations of macro-nutrients were in the order of N>K>Ca>Mg>P in leaf, K>N>Ca>Mg>P in branch & culm, and root. The leaves had the highest concentration for each elements, followed by culm & branch, and roots. A linear regression model was obtained to explain the relationship between the rooting percentages of air-layering and mean temperatures (Y=4.835X-73.51,r2=0.90). High rooting percentages of 61∼76% were obtained from air-layering in June to September with monthly average temperatures above 26.8℃. No significant difference was found between rooting rate of air-layering and the diameter of culm, branches. The rooting rate of air-layering at proximal end of culm was 10% higher than that at distal end of culm. However, the difference diminished under warm season. The debranching treatment before air-layering could increase rooting percentage by 10% while 50% shading the branch decreased the success rate.

參考文獻


江濤. 1981. 竹筍栽培. 行政院農業發展委員會、台灣省政府農林廳編印. 台北.
呂錦明、陳春雄、吳國伍. 1997. 竹類種子苗造林試驗-麻竹. 台灣林業科學 12(3):269-278.
呂錦明、陳春雄. 1997. 竹類種子苗造林試驗-孟宗竹. 台灣林業科學 12(3):279-289.
高毓斌、張添榮. 1989. 馬來麻竹人工林之生長與生物量生產. 林業試驗所研究報告季刊 4(1):31-42.
楊純明. 2003. 利用葉綠素測計估測水稻植株葉綠素及氮素. 中華農業研究 52:73-83.

被引用紀錄


張尊堡(2018)。生物炭料源空間決策系統之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201800530
陳賜福(2007)。以分子標誌檢視綠竹及莿竹屬物種之遺傳相似度〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.02545
吳馥卉(2006)。綠竹與麻竹白化苗細胞及分子層次之檢測〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.02588

延伸閱讀