透過您的圖書館登入
IP:18.218.129.100
  • 學位論文

石墨烯奈米帶電晶體閘極微縮極限之數值分析

Numerical Study of Scaling Issues in Graphene Nanoribbon Transistors

指導教授 : 吳育任

摘要


本篇論文藉由數值模擬來探討石墨烯奈米帶電晶體閘極微縮的表現。石墨烯因為具有極高的載子遷移率,因此被視為可能達到兆赫電流增益截止頻率的高頻電晶體理想選擇之一。但由於石墨烯缺乏能隙,導致電流開關比過低。石墨烯奈米帶電晶體的實驗結果已可達到極高的電流開關比。因此本篇研究藉由有限元素分析法,解二維泊松漂移擴散方程式,來建立石墨烯奈米帶電晶體的模型,與實驗結果有高度的擬合,並進一步探討石墨烯奈米帶電晶體高頻運作的潛力。模擬結果發現藉由閘極微縮,石墨烯奈米帶電晶體截止頻率可以超過一兆赫,並仍擁有足夠的電流開關比。因此石墨烯奈米帶電晶體可以是邏輯應用的理想選擇之一。

並列摘要


This paper addresses scaling issues in graphene nanoribbon transistors (GNRFETs) by using two-dimensional (2-D) Poisson and drift-diffusion solver with finite element method (FEM). GNRFETs with the back-gated control and the channel width down to less than 5nm have been reported to have Ion/Ioff ratio up to 1E6. Our simulations show an agreement with the published experimental work and show a potential to reach unity current gain cut off frequency, fT, up to more than 1THz with a satisfying Ion/Ioff ratio at the same time. This makes GNRFETs promising for logic applications.

參考文獻


J. A. Jaszczak, and A. K. Geim. Giant intrinsic carriermobilities in graphene
and its bilayer. Phys. Rev. Lett., 100(1):016602, Jan 2008.
[2] Jian-Hao Chen, Chaun Jang, Shudong Xiao, Masa Ishigami, and Michael S.
Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on
sio2. Nat Nano, 3(4):206–209, April 2008.

延伸閱讀