透過您的圖書館登入
IP:3.144.98.13
  • 學位論文

摻鈰釔鋁石榴石功能性晶體光纖

Ce3+-Doped YAG Functional Crystal Fibers

指導教授 : 黃升龍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


光學同調斷層掃描術已經成為一個活躍的領域,具有取得活體生物組織及工業上微觀結構之三維斷層影像的功能。因此,本論文開發出具有寬頻及高亮度特性的光學同調斷層掃描術光源,經由提高掃描光源的頻寬及輸出功率以改善光學同調斷層掃描術的縱向解析度及信雜比,而且近似高斯波型的光譜形狀更可達成縱向影像畫素間之低串音。對於高亮度光源的發展也可應用於固態照明產業,以滿足日益增長的能源節約技術的需求。 在白光光源的研發上,我們成功地以共抽絲雷射加熱基座生長法開發出纖心直徑10微米的摻鈰釤釔鋁石榴石雙層纖衣晶體光纖。採用中心波長446奈米的藍光雷射二極體做為激發光源,而鈰及釤離子經吸收藍光後,分別放出中心波長560奈米的黃光及618奈米的紅光,經調整三顏色的比例,可獲得亮度高達4.5x109 cd/m2 且光通量為6.2流明的白光點光源。依據白光頻譜經模擬調整光纖長度及離子濃度最佳化後,演色性係數及相對色溫可達83及5427 K。將此光源耦入直徑200奈米的多模光纖,輸出功率及耦光效率可達4.8毫瓦及36.8%,此白光點光源適用於生醫內視鏡的應用及長距離具方向性的固態照明。 在光學同調斷層掃描術的研發上,我們成功產生中心波長及半高寬分別為560微米及90奈米之寬頻光源。為有效擴展光源頻寬,以電子槍側鍍的方式摻入釤離子,經生長後可將寬頻擴寬超過100奈米,其空間中的縱向解析度可達1.38微米,縱向影像畫素間之串音,對相鄰畫素為-22.5 dB,對第二與第三非相鄰畫素各為-32.6 dB及-41.3 dB,可應用於細胞生物組織結構或工業製造的微觀結構的量測。在增加輸出功率方面,以高反射端面鍍膜及熱退火處理方式,有效地將輸出功率提升76%。採用中心波長446奈米的藍光雷射二極體做為激發光源,可產生高達13.3毫瓦之寬頻輸出光,有效地提升光學同調斷層掃描系統的信雜比。而且以直接耦光的方式,在SMF-28輸出端可得到46.6微瓦,可進一步提升光學同調斷層掃描系統的橫向解析度至2.8微米。由小信號增益實驗量測結果可知,在86毫瓦功率激發下,可使波長532奈米的信號光強度-22.2 dBm,產生4.2 dB的小訊號增益。未來可在晶體光纖兩側端面鍍上高反射光學膜,達成Ce3+:YAG晶體光纖雷射的開發或開發綠光波段的光放大器。

並列摘要


The technology of optical coherence tomography (OCT) has become an active research field for its capability of in vivo and three-dimensional tomographic imaging of biological tissues and microstructure morphology in industrial application. Thus, this thesis is dedicated to prepare a broadband and high brightness light source for an OCT system to improve its performance of bandwidth and output power. The broad bandwidth enhances the OCT axial resolution and its high power boosts the signal-to-noise ratio (SNR). Its nearly Gaussian spectrum enables crosstalk of the axial image, The current light source development can also be applied in the solid-state lighting industry to meet the growing demands of energy-saving and sustainable technology. For research and development in the white light source, a 10-

參考文獻


[1.1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
[1.2] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., vol. 117, pp. 43–48, 1995.
[1.3] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett., vol. 22, pp. 340–342, 1997.
[1.4] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett., vol. 22, pp. 934–936, 1997.
[1.5] S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett., vol. 25, pp. 102–104, 2000.

被引用紀錄


Ho, T. S. (2015). 基於寬頻晶體光纖元件之功能性光學同調斷層掃描術之研究 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2015.00554

延伸閱讀