透過您的圖書館登入
IP:18.188.168.28
  • 學位論文

二維機械熱電異質接面用於自主供能感測器

Two-Dimensional Mechano-Thermoelectric Heterojunctions for Self-Powered Sensors

指導教授 : 謝雅萍 謝馬利歐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為因應日趨複雜之挑戰,積極研發具有不同功能的材料勢在必行。由二硒化錫和石墨烯所組成的原子級厚度之薄層異質接面,其界面交互作用力相當大且具備了多功能特性。在生長實驗中,我們設計了一套輔以石墨烯的化學氣相沉積方法。透過此法,能於 100 ℃ 極低溫的情況下長出大面積且高品質的二硒化錫在石墨烯上。藉由這直接生長方法,在二硒化錫與石墨烯之間的磊晶排列展現出熱電及機電性能,且兩者共同組成所展現之能力比單一材料更顯效果。石墨烯的高載子傳導率強化了薄層異質接面的電學特性,而界面介導抑制的影響使得它的熱導率降低。兩種情況同時發生成就了熱電優值的上升。再者,空間上的界面不均勻作用會讓應力於二硒化錫的晶界處局部化,進而產生一套新穎的裂紋輔助應變感測機制,其靈敏度優於任何二維材料。上述材料特性與元件性能可達成自主供能感測器如何於小溫度梯度上提供快速且可靠的應變感測,而我們對於材料多功能在原子尺度上的初步理解可以讓薄層異質接面在智能設備的應用上更加完善適當。

並列摘要


To cope with the increasingly complicated challenges, a material with different functions is being actively developed. With strong interfacial interactions, an atomically thin heterojunction which consists of tin diselenide and graphene displays the multifunctional properties. In the growth experiment, we devise a graphene-assisted CVD method that permits large-scale and high-quality tin diselenide growth on graphene at ultralow temperature, 100 ℃. Epitaxial alignment between tin diselenide and graphene through direct growth exhibits thermoelectric and mechanoelectric performances beyond the capacity of either component. Graphene’s high carrier conductivity enhances electrical properties of the thin heterojunction and an interface-mediated suppression decreases its thermal conductivity, both of which simultaneously result in an increasingly ZT value of our thin heterojunction. Moreover, the spatially inhomogeneous interaction strength of the interface yields stress localization at tin diselenide grain boundaries, which brings out a novel crack-assisted strain sensing mechanism whose sensitivity is superior to all other 2D materials. All of these observed properties and performances allow the realization of self-powered sensors who provides fast and reliable strain sensing from a small temperature gradient. The fundamental understanding of multifunctionality at the atomic scale makes our thin heterojunction ideally suited for smart device application.

參考文獻


[1] Lendlein, A.; Trask, R. S. Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunctional Materials 2018, 1 (1), 010201.
[2] Gupta, P.; Mnnit, R. K. S., Overview of Multi Functional Materials. In New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, IntechOpen: Rijeka, 2010.
[3] Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: a review. Multifunctional Materials 2020, 3 (4), 042003.
[4] Ferreira, A. D. B. L.; Nóvoa, P. R. O.; Marques, A. T. Multifunctional Material Systems: A state-of-the-art review. Composite Structures 2016, 151, 3-35.
[5] Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.

延伸閱讀