透過您的圖書館登入
IP:3.146.35.203
  • 學位論文

運用基因演算法設計應用於耐高溫環氧樹脂之新型固化劑

Design of Novel Curing Agents for High Temperature Resistant Epoxy Resins by Genetic Algorithm

指導教授 : 黃慶怡

摘要


環氧樹脂以其優異的綜合性能在許多領域中得到廣泛應用,為了滿足各領域的應用標準,耐高溫環氧樹脂的開發儼然成為重要的問題。本研究導入電腦模擬技術對耐高溫環氧樹脂的胺類固化劑進行研發,選擇最具代表性的環氧單體DGEBA作為主要系統,尋找具備耐高溫特性的新型固化劑設計方案。我們收集了近二十年來以環氧單體DGEBA及胺類固化劑為主要材料的實驗文獻,透過定量結構性質關係(Quantitative structure-property relationships)技術來建立理論計算值與實驗數據的擬合式,並對其進行基因演算法的分析及材料使用的觀察,得出胺類固化劑分子結構影響環氧樹脂整體Tg值的關鍵因素為分子結構對稱性、分子量、固化劑中氮、氧、硫原子及芳香環數目。藉由這些關鍵因素來提出一系列可能具備耐高溫特性的基團並用於設計新型固化劑,其中觀察到在以蒽環(Anthracene)及萘環(naphthalene)進行結構改質時可以最顯著的提升Tg值;此外,碸基(Sulfone)及醯胺基(Amido)作為連接官能基時,對整體Tg提升也會有明顯的效果,約略提升5~10 K。後續對於所設計的新型固化劑用於環氧樹脂的理論計算Tg值代入擬合式來進行預測,值得注意的是,在新型設計的固化劑中,以非工業級固化劑PABP為參考對象時,可得到最高的預測實驗Tg值在含蒽環及不含蒽環的情況下分別為674 K及598 K,兩者皆遠遠超越我們在文獻收集中最高的530 K。透過本研究對於關鍵因素的探討並將其用於設計新型固化劑的設計策略,達到加速材料開發及降低開發成本的可能性,期許能作為實驗學者在未來研究上的參考依據,並且促進該領域的蓬勃發展。

並列摘要


Epoxy resins have been widely used as high-performance adhesives in many industries due to their excellent comprehensive properties. To meet the greater demands in the industry, developing high-temperature resistant epoxy resins continues to be a significant issue. In this research, we choose the mostly used diglycidyl ether of bisphenol A (DGEBA) epoxy resin as a model system. The Tg values of top 10 curing agents are around 460~530K. Firstly, we aim to explore the dominant factors that affect the glass transition temperature (Tg) by employing the Genetic Algorithm to analyze the experimental literature data of Tg. In particular, the aromatic rings, the symmetry of molecular structure, molecular weight, and the number of oxygen, nitrogen, and sulfur atoms of the curing agents are observed to have a great influence on the resultant Tg. According to this trend of Tg, we design the candidates of potentially high Tg values of functional groups and symmetric molecular structures, and calculate the corresponding Tg via the Quantitative Structure-Property Relationships (QSPR). Through the fitting of the positive relationship between the experimental and calculated values of Tg, we observe more than 20 novel curing agents with Tg higher than the #1 experimental value of 530 K, which have not been synthesized yet! In addition, we observed that Anthracene, naphthalene, sulfone, and amido group make significant contributions to Tg. Our results provide the synthetic strategy of novel curing agents of high-temperature resistant epoxy resins.

參考文獻


[1] Ni, Y.; Zheng, S.; Nie, K., Morphology and Thermal Properties of Inorganic–Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes. Polymer 2004, 45 (16), 5557-5568.
[2] Liu, Y.; Zheng, S.; Nie, K., Epoxy Nanocomposites with Octa(Propylglycidyl Ether) Polyhedral Oligomeric Silsesquioxane. Polymer 2005, 46 (25), 12016-12025.
[3] Boinard, P.; Banks, W. M.; Pethrick, R. A., Changes in the Dielectric Relaxations of Water in Epoxy Resin as a Function of the Extent of Water Ingress in Carbon Fibre Composites. Polymer 2005, 46 (7), 2218-2229.
[4] Liu, H.; Uhlherr, A.; Bannister, M. K., Quantitative Structure–Property Relationships for Composites: Prediction of Glass Transition Temperatures for Epoxy Resins. Polymer 2004, 45 (6), 2051-2060.
[5] Wang, C.-S.; Shieh, J.-Y., Phosphorus-Containing Epoxy Resin for an Electronic Application. Journal of Applied Polymer Science 1999, 73 (3), 353-361.

延伸閱讀