透過您的圖書館登入
IP:3.14.253.178
  • 學位論文

氟化聚胺酯生醫材料製備與其血液相容性之研究

Synthesis and Blood Compatibility of Fluorinated Polyurethane-based Biomaterials

指導教授 : 謝國煌

摘要


聚胺酯因為具有良好的機械性質和優異的血液相容性,所以廣泛被應用在各種生醫材料上。本研究將疏水之氟碳鏈段引入聚胺酯結構中,來增加微相分離且降低表面能,以達到降低血小板吸附的功能。此外,針對材料之物理性質、表面性質以及血液相容性,進行一系列的分析與討論。 本研究共針對三個部分加以討論。 一. 含氟二醇改質之聚胺酯。 二. 主鏈含氟型紫外線可硬化聚胺酯壓克力樹脂。 三. 側鏈含氟型紫外線可硬化聚胺酯改質環氧樹脂。 第一部份(第三章)中,我們合成含有氟化雙醇的聚胺酯,且改變不同形式的鏈延長劑:1,4丁二醇和1,4氟化丁二醇,討論表面氟元素多寡對其物理性質、表面性質和血液相容性之影響。我們發現當表面的氟元素增多時,可以得到低的表面能,低血小板吸附和低蛋白質吸附。氟化聚胺酯含有50 %氟化雙醇和以1,4氟化丁二醇為鏈延長劑時,有較低的表面能和良好的血液相容性(RIPA value: 0.06; F/A ratio: 0.672)。 第二部份(第四章)裡,我們合成主鏈含氟型紫外光可硬化聚胺酯壓克力樹脂,且改變不同的異氰酸脂:對苯二異氰酸酯和己二異氰酸酯,討論表面氟元素和不同形式異氰酸酯對其物理性質、表面性質和血液相容性之影響。當導入疏水的氟碳鏈段時會增加相分離和降低表面能,以減少材料的血小板吸附。以己二異氰酸酯合成的氟化紫外線可硬化聚胺酯壓克力樹脂,有較強的氫鍵增加相分離 導致有較低的表面能和較好的血液相容性。 第三部份(第五章)裡,我們合成側鏈含氟型紫外光可硬化聚胺酯改質環氧樹脂。這個章節中我們針對新的取代基(連結氟碳鏈段和環氧樹脂骨幹)加以討論。此新的取代基含有聚胺酯和長的碳氫鏈段。因為取代基中的聚胺酯會產生較強的氫鍵,此外取代基中的碳氫鏈段和氟碳鏈段會有良好的分離性,會產生材料結構的自我排列整齊,這兩種現象會使氟碳鏈段更接近表面,而得到超低的表面能。此章節中我們所合成的聚胺酯改質型的氟化環氧樹脂只含有五個氟碳基(-C5F11)而且有高低的表面能(γs; 4.3 mJ m–2)和優異的血液相容性(RIPA value: 0.10)。

並列摘要


Polyurethanes have the properties of good elasticity and high tensile strength, elongation, and blood compatibility for biomedical applications. In this study, the hydrophobic fluorocarbon introduced into polyurethane’s structure which could increase microphase separation and decrease surface energy. The low surface energy and microphase separation on the material’s surface cause them to become concentrated preferentially at the surface of the polymer for reducing the degree of the platelet adhesion. Besides, the physical properties, surface properties, and blood compatibility of these materials were investigated. There are three major parts in this dissertation. 1. Fluorodiol-containing polyurethane. 2. UV-curable fluorinated poly(urethane-acrylate) resin. 3. UV-curable fluorinated PU modified epoxy resin. A number of fluorodiol-containing polyurethanes (in chapter 3) were synthesized from the fluorodiols 1H,1H,12H,12H-perfluoro-1,12-dodecanediol (PFDDOL) and 1,4-butanediol (BD) or 2,2,3,3,-tetrafluoro-1,4-butanediol (TF) and characterized using Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and electron spectroscopy for chemical analysis (ESCA). The effect of the fluorine content on the physical and surface properties of the polymers and on their blood compatibility were investigated. A higher content of fluorine atoms exposed on the surface results in a lower surface energy, a lower relative index of platelet adhesion (RIPA), and a lower fibrinogen/albumin adsorption ratio (F/A ratio). The polyurethane containing a 50% molar ratio of 1H,1H,12H,12H-perfluoro-1,12-dodecanediol and 2,2,3,3,-tetrafluoro-1,4-butanediol as the chain extender exhibited the lowest surface energy and superior blood compatibility (RIPA value: 0.06; F/A ratio: 0.672). Novel UV-curable fluorinated poly(urethane-acrylate) (FPUA) oligomers (in chapter 4) were synthesized from 1H,1H,12H,12H-perfluoro-1,12-dodecanediol (PFDDOL), either 1,6-hexamethylene diisocyanate (HDI) or 4,4´-diphenylmethane diisocyanate (MDI), and 2-hydroxyethyl methacrylate (HEMA) for end-capping with photo-crosslinkable methacrylate groups. We investigated the effects of the fluorine content and the nature of the isocyanate on the physical properties, surface properties, and blood compatibilities of the polymers. The introduction of hydrophilic fluorocarbon chains led to phase separation and a low total surface energy, which reduced the adhesion of blood platelets onto the materials. The HDI-type UV-curable, fluorinated poly(urethane-acrylate) exhibited a low surface energy and superior blood compatibility (as determined from RIPA values). Novel UV-curable fluorinated PU modified epoxy acrylate (FEA) oligomers (in chapter 5) were synthesized from 1H,1H-Perfluorohexan-1-ol (PFHOL), 1,6-hexamethylene diisocyanate (HDI), and epoxy acrylate (EA). This section was then focused on the role played by the spacer group located in the side chain between backbone and the fluorinated segment. The new spacer with urethane and long alkyl groups that is capable of generating strong hydrogen bonding and self-organization effect, which results in a stiffening of the whole spacer-perfluoalkyl chain, thus easing surface segregation and order near the surface. The fluorinated PU modified epoxy acrylate which only has five fluoroalkyl (-C5F11) exhibited a ultra low surface energy (γs; 4.3 mJ m–2) and superior blood compatibility (RIPA value: 0.10).

參考文獻


3. Ratner, B.D., J. Biomat. Sci. – Polym. E., 11, 1107 (2000).
4. Okkema, A.Z., Visser, S.A., J. Biomed. Mater. Res., 25, 1371 (1991).
8. Langer, R., Vacanti, J.P., Science, 260, 920 (1993).
9. Grasel, T.G.; Cooper, S.L., Biomaterials, 7, 315 (1986).
11. Hergenrother, R.W.; Wabers, H.D.; Cooper, S.L., Biomaterials, 14, 449 (1993).

延伸閱讀