透過您的圖書館登入
IP:18.216.94.152
  • 學位論文

超疏水仿生表面:製程、性質及其應用於蒸發探討

Biomimetic Superhydrophobic Nanostructured Surface: Fabrication, Properties and Application in Evaporation

指導教授 : 盧彥文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文第一階段研究液滴在兩種不同表面形貌表面的蒸發現象,包括銅光滑表面與銅奈米結構表面。實驗中銅奈米結構使用定電壓電鍍方式沉積銅奈米線,並採用多孔性陽極氧化鋁濾膜 (porous anodic aluminum oxide membrane;AAO) 做為生長銅奈米線模板,製備成具有直徑200 nm、高25 μm的銅奈米線表面結構。實驗結果顯示,液滴在光滑表面與在銅奈米結構表面上蒸發,基本上依循著三階段模式改變:(一)固定基線階段、(二)固定接觸角階段、(三)收縮階段。而液滴在奈米結構上成為具有高的接觸角與低接觸角滯後特性,此特性在蒸發過程中定義出與光滑平面不同的蒸發現象。由實驗可知奈米結構增加表面疏水性,疏水性影響了液滴的接觸角、接觸線及相變化過程,如蒸發現象。 第二階段我們發現當以AAO 模板的製程方式沉積奈米線結構時,於濕式移除AAO模板後受液體表面張力影響使得奈米線產生不同大小的叢集。因此我們研究以不同長度的奈米線與不同的乾燥程序產生不同程度的奈米線叢集探討其對表面濕潤性的影響。研究使用定電壓方式控制銅奈米線沉積時間,製備成具有直徑200 nm、高度分別為2 μm, 8 μm, 25 μm的銅奈米線的表面結構。於移除AAO模板後分別使用蒸發乾燥法、熱乾燥法及臨界點乾燥法等方式進行樣本的乾燥以期產生不同程度的表面均質性。由實驗結果顯示,表面接觸角、滯後現象與不同程度的奈米線叢集有關,利用不同的奈米線長度與乾燥方式可控制不同程度的奈米線叢集並改變表面疏水性。 由此二階段的實驗可知奈米結構改變了表面的濕潤性。藉由改變表面結構來改變表面性質及界面特性是微奈米結構表面重要的特點,因此製備微奈米線結構表面與良好的控制金屬奈米線叢集的表面可能扮演一個重要的因子在生物工程的應用發展上。

並列摘要


This thesis first studied the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructure was fabricated by electrodeposition copper (Cu) nanowires on smooth substrate. The porous anodic aluminum oxide (AAO) membrane was used as template to deposit nanowires of 200 nm in diameter and 25 μm in length. When the sessile droplets of deionized water and methanol-water binary mixtures evaporated on both smooth and nanostructured surfaces, they basically follow three stages:(I) constant baseline stage, (II) constant contact angle stage and (III) shrinking stage. In addition, the nanostructured surfaces, which possessed superhydrophobicity, changed sessile droplets’ contact angles, contact lines and therefore evaporation phase change behaviors. The second part of the thesis further examined the nanowire distribution and related surface properties. The nanowires agglomerated differently when different releasing techniques, including drying techniques: evaporation drying, thermal drying and supercritical drying, were employed. It was found that the nanowires agglomeration resulted in different degrees of surface homogeneity, so the contact angle and hysteresis.

參考文獻


Alberti, G., Desimone, A., 2005. Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 79-97.
Anantharaju, N., Panchagnula, M., Neti, S., 2009. Evaporating drops on patterned surfaces: Transition from pinned to moving triple line. Journal of Colloid and Interface Science 337, 176-182.
Berteloot, G., Pham, C.T., Daerr, A., Lequeux, F., Limat, L., 2008. Evaporation-induced flow near a contact line: Consequences on coating and contact angle. Epl 83.
Birdi, K.S., Vu, D.T., 1993. Wettability and the evaporation rates of fluids from solid-surfaces. Journal of Adhesion Science and Technology 7, 485-493.
Birdi, K.S., Vu, D.T., Winter, A., 1989. A study of the evaporation rates of small water drops placed on a solid-surface. Journal of Physical Chemistry 93, 3702-3703.

延伸閱讀