透過您的圖書館登入
IP:18.117.8.216
  • 學位論文

以超重力臭氧反應器處理含萘及界面活性劑水溶液之研究

The Study on Ozonation of Naphthalene and Surfactants Containing Solutions with High-Gravity Rotating Packed Bed

指導教授 : 張慶源

摘要


本研究之目的在於以臭氧結合超重力旋轉填充床氣液接觸器(HGRPB)處理界面活性劑含萘(NAP)之水溶液,並探討界面活性劑對於臭氧質傳及氧化特性之影響。 本實驗於半批次液體循環式之操作下,進行界面活性劑之臭氧化實驗,實驗結果顯示SDS不會與臭氧反應,而Brij 30會與臭氧進行親電子之反應,但兩者皆不容易被臭氧礦化成二氧化碳及水。 半批次臭氧質量傳輸實驗中,SDS之濃度由0.00164 增加至0.1M,溶解性臭氧濃度由2.32 下降至0.49 mg/L。SDS濃度未達臨界微胞濃度(CMC),提高SDS濃度會使溶解性臭氧濃度下降其下降趨勢較SDS濃度達大於等於CMC值之溶解性臭氧濃度大。當SDS之濃度未達CMC值,臭氧於水相中之自我降解常數與界面活性劑之濃度之關係式為 。 超重力系統連續式NAP之氣提實驗中,添加界面活性劑之氣提效果較差,而界面活性劑濃度達CMC值時,NAP之氣提效率與界面活性劑之濃度(大於CMC)及NAP之濃度關係不明顯,其氣提之效率為4-10%,變化不大,推測僅與氣體之進流流量有關。 超重力系統連續式NAP之臭氧化實驗中,不同之界面活性劑水溶液中溶解相同劑量之NAP之臭氧化實驗,溶解於SDS水溶液中之NAP較溶解於Brij 30水溶液較易臭氧化。而不同Brij 30濃度下溶化相同之NAP量之臭氧化實驗,當Brij 30 濃度100 mg/L增加至1000 mg/L,臭氧對NAP之去除率由82.26變為36.67%。相同Brij 30濃度下溶化不同NAP的量之臭氧化實驗,當NAP之濃度由10 mg/L增加至100 mg/L,NAP之去除率由98.35%下降至82.26%。由於HGRPB填充床之體積過小,導致臭氧與NAP之接觸時間太短,臭氧與NAP之反應不完全,且因Brij 30會與臭氧進行反應,而與NAP競爭臭氧,因此當Brij 30或NAP之濃度提高,NAP臭氧化之去除率降低。 將經臭氧化兩小時之界面活性劑SDS及Brij 30溶液回收再增溶NAP之實驗,100 mg/L 之SDS 仍可溶解35 mg/L之NAP,1000 mg/L 之 Brij 30仍可溶化120 mg/L之NAP,說明界面活性劑有再回收使用之可能性。

並列摘要


The objective of this study is to examine the ozonation of naphthalene (NAP) and surfactants with high-gravity rotating packed bed (HGRPB). Furthermore, the influences of surfactants on mass transfer and the ozonation performance were investigated in this study. The HGRPB for semi-batch operation with recycle liquid is employed to the ozonation of surfactants in this part of experiment. The results showed that sodium dodecylsulfate (SDS) reacted with ozone insignificantly but polyoxyethylene (4) lauryl ether (Brij 30), which reacted with ozone via the electrophilic addition reaction. However, it is difficult to mineralize both SDS and Brij 30 into carbon dioxide (CO2) and water (H2O) by means of ozonation. Regarding the mass transfer experiments, the results showed that dissolved liquid ozone increased from 2.32 to 0.49 mg/L with the decrease of the SDS concentration from 0.00164 to 0.1M. The self-decomposition rate constant of ozone depended on the concentration of SDS in aqueous phase is . The results of HGRPB of continuous flow operation to strip naphthalene from aqueous solution showed that the efficiency of the stripping is better in deionized water than in surfactants-containing solution (above CMC). When the concentration of surfactants is above CMC, the concentrations of the surfactant and NAP affect the removal efficiency of stripping. The stripping efficiency may be related to the gas flow rate. The efficiency of ozonation of NAP dissolving in the SDS solution is better than that in the Brij 30 solution with same concentration of NAP. The removal efficiencies of NAP decreased from 98.3 to 82.36 % as the concentration of Brij 30 was from 100 to 1000 mg/L. The concentration of NAP increased from 10 to 100mg/L, while the efficiency of ozonation decrease from 82.26 to 35.67%. The contacting volume of HGRPB is 185 mL, in which the contact time is too short for ozone to completely react with NAP. Due to the comsumption of ozone by Brij 30, the higher concentrations of Brij 30 and NAP decreased the removal efficiency of NAP. The surfactant-containing solution after ozonation and can further re-dissolve NAP of 35 (SDS of 100 mg/L) and 120 mg/L (Brij 30 of 1000 mg/L), respectively. Therefore, it is feasible to reuse the surfactant-containing solutions after ozonation.

參考文獻


1. Andelman, L. and M. J. Suess, “Polynuclear Aromatic Hydrocarbons in the Water Environment,” Bull. W.H.O., 43, 479 (1970).
2. Beltrán, F. J., J. F. García-Araya and P. M. Álvarez, “Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 1. Kinetics of Decomposition by Ozonation,” Ind. Eng. Chem. Res., 39, 2214 (2000).
3. Beltrán, F. J., J. F. García-Araya and P. M. Álvarez, “Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 2. Kinetics of the Integrated Ozone-Activated Sludge System,” Ind. Eng. Chem. Res., 39, 2221 (2000).
5. Brambilla, A. M., L. Calvosa, A. Monteverdi, S. Polesello and B. Rindone, “Ozone Oxidation of Polyethoxylated Alcohols,” Water Research, 27, 1313 (1993).
6. Brambilla, A., E. Bolzacchini, M. Orlandi, S. Polesello and B. Rindone, “Reactivity of Two Models of Non-ionic Surfactants with Ozone,” Water Research, 31, 1839 (1997).

延伸閱讀