本論文主要是討論反射式調變器及其線性化之應用,研究方向是著重於使用商業化砷化鎵異質介面雙載子電晶體和高電子移動率電晶體來設計毫米波段之調變器。研究的主題包含反射式調變器的不平衡分析及其設計公式,其分析結果也將和實驗結果相互驗證。在本論文中,我們對於異質介面雙載子電晶體和高電子移動率電晶體研究發展出非線性模型,此模型可使用於電路設計與模擬。 應用於數位調變之寬頻反射式二相位及正交調變器設計於30 GHz和140 GHz頻段間,這些單晶毫米波積體電路展現良好的本地訊號源抑制和調變品質,同時其本地訊號源驅動功率可小於-8 dBm以下。應用於毫米波調變器之向量訊號分析系統論述於本論文中,此外,使用於反射式正交調變器的載波及旁波帶抑制公式也藉由次方級數來研究發展出。向量訊號分析亦應於調變器單晶毫米波積體電路量測,其量測結果亦和頻譜量測結果相互比較。使用於單晶毫米波積體電路的貫穿孔,在頻率超過100 GHz時的共振現象及其研究分析也將描述於本論文中。此二相位調變器單晶毫米波積體電路經雷射修整後,其操作頻率則可進一步達到140 GHz。 在本論文,我們亦設計製作一個應用於數位調變W頻段直接轉換發射器。對於一個正交調變發射器而言,其振幅到振幅和振幅到相位的失真研究分析將被論述及討論。從分析結果,本論文提出了一個新的線性化方案,並應用於W頻段發射器上。藉由數位前置失真技術,此發射器在77 GHz附近,其輸出頻道功率可達19 dBm。對於16-QAM、QPSK和
Reflection-type modulators and their linearization applications are presented in this dissertation. The research focuses on the development of millimeter-wave modulators using commercial GaAs HBT and HEMT MMIC processes. The analysis and design equations of imbalance effects for the reflection-type modulators are investigated to obtain the circuit design procedures, and the analysis results are also verified with the experimental results. The cold-mode models for HBT and HEMT devices are developed in this dissertation for the circuit design and simulation. Broadband reflection-type BPSK and IQ modulators for the digital modulation applications were developed between 30 and 140 GHz. These MMICs demonstrated well LO suppression and modulation quality with the LO power of lower than -8 dBm. A vector signal characterization for the measurement of the millimeter-wave modulators is presented. Moreover, the equations of carrier and sideband suppressions for the reflection-type IQ modulator are investigated by using a power series for the cold-mode devices. The characterizations of the modulator MMICs were performed and compared with the spectrum characterizations. The phenomenon of via-hole resonance above 100 GHz for the BPSK modulator is also observed. After laser-repairing, the operation frequency of the BPSK modulator MMIC has been further extended to 140 GHz. A W-band direct-conversion transmitter for digital modulation applications was developed. The AM-AM and AM-PM distortions in a quadrature-modulator transmitter were also investigated. From the analysis, a new scheme of linearization is developed for W-band transmitter applications. By using the digital pre-distortion technique, this transmitter demonstrated an output channel power of 19-dBm around 77 GHz.