透過您的圖書館登入
IP:3.149.26.176
  • 學位論文

鋰離子電池多孔性鎳矽複合負極材料製備與分析

Synthesis and Characterization of Porous NiSi-Si Composite Anode Materials for Lithium-Ion Batteries

指導教授 : 吳乃立

摘要


本論文之目的在於開發以矽為主體的鋰離子二次電子負極材料。過去十年當中,與其他負極材料相比,矽因擁有絕佳的理論比電容(~3600 mAh/g)而受到重視。然而由於在充放電過程中伴隨著劇烈的體積膨脹收縮以及矽本身的低導電的特性,導致極板結構上的崩解,使得矽負極材料在商業化的過程中受到阻礙。 以穩定極板結構的觀點為考量,藉由結合高能球磨與蝕刻的製程,成功地製備具有高孔隙度的NiSi-Si複合負極材料,藉由實驗證明,這種預留粒子內孔洞的方法確實能夠緩衝矽在充放電時所造成的體積變化,再者,經由臨場XRD實驗結果發現在充電的過程中有NiSi2的形成,對於極板體積的膨脹有補償的作用。 此外,本研究也嘗試以SEM與XPS的分析,去探討經過充放電於純矽以及矽碳負極材料上所形成的SEI膜的形態與組成 (以LiPF6 為鋰鹽,EC/EMC 為電解液)。結果顯示,於純矽極板上經過一圈的充放電之後就有明顯的表面沉積物,可能是矽表面的矽氧化物表面的親水性所造成電解液的分解,然而經過表面改質鍍碳的矽,能有效的阻絕矽氧化物與電解液的接觸,改變電解液分解的反應,降低氟化合物的生成。

關鍵字

鋰離子電池 高能球磨 SEI膜 多孔結構

並列摘要


The main objective of this research is to explore new materials based on silicon for lithium-ion battery. In the last decade, silicon has attracted much attention because it has the highest specific capacity (~3600 mAh/g) for any of anode materials studied to date. However, Si undergoes a dramatic volume change during cycling and possesses intrinsically poor conductivity, resulting in the mechanical instability and poor cyclability, retard its commercial application. From the view point of stabilizing electrode structure and increasing the conductivity, porous NiSi-Si composite anode material has been synthesized by high-energy ball milling, of mixture of Ni and Si and subsequent dissolution of un-reacted Ni. The preset intra-particle voids have been shown to help to accommodate volume expansion arising form the alloying of Si. Furthermore, Synchrotron XRD indicates that the NiSi component is active toward Li alloying, and Ni2Si is formed during Li alloying. Both preset intra-particles void and presence of Ni2Si help to maintain the integrity of the electrode, resulting in much reduced thickness expansion, as compared with pure Si electrode. In addition, the morphology and composition of SEI layer formation on Si or C-Si anode using LiPF6 in EC/EMC as electrolyte have been carried by means of SEM and XPS analysis. Superficial deposition is vivid even after only one cycle because of the existence of –OH/H2O bounded on SiO2 surface. After coating carbon on Si surface, the formation of Si oxide is reduced.

參考文獻


1. J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367 (2001).
3. K. M. Abraham, D. M. Pasquariello and F. J. Martin, "Mixed Ether Electrolytes for Secondary Lithium Batteries with Improved Low Temperature Performance", Journal of The Electrochemical Society, 133, 661-666 (1986).
4. A. J. Jacobson, R. R. Chianelli and M. S. Whittingham, "Amorphous Molybdenum Disulfide Cathodes", Journal of The Electrochemical Society, 126, 2277-2278 (1979).
5. M. S. Whittingham and M. B. Dines, "n-Butyllithium - An Effective, General Cathode Screening Agent", Journal of The Electrochemical Society, 124, 1387-1388 (1977).
6. E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems - The Solid Electrolyte Interphase Model", Journal of The Electrochemical Society, 126, 2047-2051 (1979).

延伸閱讀