一般UV樹脂微結構複製製程的曝光採直下式,耗能且壓印面積受限,本研究致力於開發側入式光源大面積微結構複製技術,並結合紫外光固化成型技術、反轉式壓印成型技術及氣囊輔助壓印製程,提供一個室溫成型、節能且快速的微結構轉寫製程。本系統有下列優點:全新側入式光源的導入,不僅於能源使用上降低成本,且解決了大面積微結構複製之限制;本製程亦使樹脂固化過程緩和,使黏模及微結構破壞等問題獲得改善;並配合紫外光固化成型技術,使製程於室溫下進行,減少因升降溫過程所造成之材料翹曲及殘留應力等問題;反轉式壓印成型技術,則藉由樹脂塗佈於模具上,使樹脂先行流入模穴,以提高微結構轉寫率;氣囊輔助壓印技術具流體施壓均勻之物理特性,使全區域之壓印壓力分布均勻,並提高各區域微結構之轉寫情形。 實驗結果顯示,使用大面積側入式光源配合反轉式塗佈氣輔壓印複製,能成功在大面積(380 mm × 230mm)之壓克力基板上,複製出V-cut微結構,複製均勻性及轉寫率均佳。所壓印出之微結構藉由光輝度值量測,証實其成品已具備使用價值。經由PDMS軟模配合側入式光源及氣囊輔助壓印機制,也成功複製出具高轉寫率之菲涅爾透鏡,及微透鏡陣列結構。本研究證實結合全新側入式光源、紫外光固化壓印成型、反轉式壓印成型並配合氣囊輔助壓印,成功開發出一大面積光學元件製程技術,可應用於大面積表面微結構之光學及生醫元件量產上。
The conventional UV resin is cured by direct irradiation from the bottom. High energy consumption and limited imprint area are problems. In this study, an innovative side-emitting UV-curing imprinting process is developed for large area microstructure replication. In this study, we integrate the ultraviolet-curing imprint, reversal imprinting and gasbag-assisted imprinting to fabricated microstructures. The side-emitting gasbag-assisted UV-curing imprint process yields energy saving, short cycle time, uniform pressure and room temperature processing. The process not only reduces the waste but also enlarges the fabrication area. The moderate UV curing with UV emitting from sides prevent mold sticking and microstructure damage. The reversal imprinting coating and gasbag-assisted embossing provides the uniform pressure over the whole substrate. The process has been successfully used for fabricating V-cut microstructures on the whole area of 380mm by 230mm. The imprinted plates shows that the micro-structures have its brightness enhancement function. The facility and process has also been used to fabricate Fresnel lens and micro lens structures successfully. The process integrating gasbag-assisted pressuring, UV-emitting from sides, reversal UV imprinting shows great potential for replication of large-area microstructures for optical and biomedical application.