透過您的圖書館登入
IP:18.227.0.192
  • 學位論文

利用馬來酰亞胺聚對二甲苯鍍膜之改質表面增強細胞分化

Enhanced Cell Differentiation of Surface Modification Based on Maleimide-Functionalized Coatings

指導教授 : 陳賢燁

摘要


高級生物材料的表面改質使得能夠操縱幹細胞增殖和分化在再生和修復受損組織中是重要的。為了克服許多方法中的一些限制,例如基質材料,不同分化的不同處理要求,生物相容性的改質表面,和/或 需要其他額外技術為了提升干細胞粘附。除此之外,我們利用馬來酰亞胺官能化的聚對二甲苯(maleimide-functionalized parylene) 塗層通過化學氣相沉積 (CVD) 聚合模仿幹細胞微環境。得到的馬來酰亞胺官能化塗層具有塗層保形性,不含引髮劑和催化劑,無溶劑環境,以共價固定生長因子蛋白。馬來酰亞胺基團和硫醇基團進行邁克爾加成以固定生長因子蛋白質骨形態發生蛋白 (BMP-2) 和成纖維細胞生長因子(FGF-2) 以支援改質表面上的細胞分化和增殖。重點是,與未改質的對照表面相比,改質表面增強細胞分化,包括成骨,軟骨形成和脂肪形成分化和增殖。 這些優異的生物學性質為生物醫學應用中的馬來酰亞胺官能化二甲苯提供了有希望的前景。

並列摘要


Modifications of advanced biomaterials to enable the manipulations of stem cell differentiation and proliferation are significant in regenerating and repairing damaged tissue. To overcome some limitations in many approaches such as substrate materials, different treatment requirements for dissimilar differentiations, biocompatibility of the modified surface, and/or necessity of additional techniques for better stem cell adhesion, here we introduce a chemically defined surface modification to mirror stem cell microenvironment in vivo based on maleimide-functionalized poly-para-xylene (PPX) coating via chemical vapor deposition (CVD) polymerization. The resulting maleimide-functionalized coating is determined possessing coating conformality, absents of initiator and catalyst, solvent-free environments, and effortless click reaction to covalently immobilize the growth factor proteins. The maleimide group and thiol group undergo Michael addition to immobilize growth factor protein Bone Morphogenetic Protein 2 (BMP-2) and Fibroblast Growth Factor 2 (FGF-2) to support cell differentiation and proliferation on the modified surface. Most importantly, the modified surface enhances cell differentiation including osteogenic, chrondogenic, and adipogenic differentiations and proliferation comparing to unmodified control surfaces. These excellent biological properties present a promising prospect for maleimide-functionalized PPX in biomedical applications.

參考文獻


1. Yang, X. B.; Roach, H. I.; Clarke, N. M.; Howdie, S. M.; Quirk, R.; Shakesheff, K. M.; Oreffo, R. O., Human Osteoprogenitor Growth and Differentiation on Synthetic Biodegradable Structures after Surface Modification, Bone, 2001, 29(6), 523-531.
2. Curran, J. M.; Chen, R.; Hunt, J. A., The Guidance of Human Mesenchymal Stem Cell Differentiation in Vitro by Controlled Modifications to the Cell Substrate, Biomaterials 2006, 27, 4783-4793.
3. Griffin, M. F.; Ibrahim, A.; Srifalian, A. M.; Butler, P. E. M.; Kalaskar, D. M.; Ferretti, P., Chemical Group-dependent Plasma Polymerization Preferentially Directs Adipose Stem Cell Differentiation towards Osteogenic or Chondrogenic Lineages, Acta Biomaterialia 2017, 50, 450-461.
4. Gupta, B.; Plummer, C.; Bisson, I.; Frey, P.; Hilborn, J., Plasma-induced Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Films: Characterization and Human Smooth Muscle Cell Growth on Grafted Films, Biomaterials 2002, 23(3), 863-871.
5. Ma, Z.; Gao, C.; Yuan, J.; Ji, J.; Gong, Y.; Shen, J., Surface Modification of Pol-L-Lactide by Photografting of Hydrophilic Polymers towards Improving Its Hydrophilicity, Journal of Applied Polymer Science 2001, 85(10), 2163-2171.

延伸閱讀