透過您的圖書館登入
IP:3.145.166.7
  • 學位論文

氮化銦奈米線的成長及其傳輸特性

Growth and Transport Properties of Indium Nitride Nanowires

指導教授 : 馮哲川

摘要


氮化銦由於高電子移動率和飽和速率,在三五族氮化物半導體中對高性能電子元件來說是非常具有吸引力的材料。另一方面,一維奈米結構如奈米線和奈米帶由於它們特殊的光學、電學和機械性質引發了強烈的注意。一維奈米結構是能有效率的傳輸電子的最小尺度,也因此是理想中適合奈米尺度系統如此極端及多樣化的工作環境。在本篇論文中,氮化銦奈米線成功的由有機金屬化學沈積系統合成。在結構上由X光繞射譜線及拉曼光譜分析,掃瞄式電子顯微鏡則顯示氮化銦以奈米線的形狀存在,高解析度穿透式電子顯微鏡影像則能顯示出氮化銦以單晶的形式磊晶。氮化銦奈米線的傳輸特性則由雙探針及低溫系統來量測,結果指出表面電子的累積可能對奈米線的傳輸有特定的影響。另外我們也量到了氮化銦奈米線的光導特性。

關鍵字

氮化銦 奈米線 電性

並列摘要


Because of high mobility and high saturation velocity, InN has, among the III-nitride semiconductors, become an attractive material for electronic devices of superior performance. The other hand, one-dimensional nanostructures, such as nanowires and nanobelts, has attracted great attention because of their peculiar optical, electrical and mechanical properties. 1D nanostructures illustrate the smallest dimension structure that can be efficiently transport electrical carriers, and thus are ideally suited to the critical and ubiquitous task of moving charges in integrated nanoscaled system. In this study, indium nitride nanowire was successfully grown by MOCVD system. Structure studied by x-ray diffraction (XRD) spectra and Raman spectrometer. High resolution electron microscope (HRTEM) measurement revealed that single crystalline of indium nitride nanowire. (IR-PL) measurement system showed the 0.76eV band gap of InN nanowire. The scanning electron microscope (SEM) investigations on the indium nitride (InN) showed the morphology of nanowire. Transport properties of single InN nanowire was measured by two probe and low temperature system. Multi-terminals measurement shows more direct result of InN nanowire resistivity. The plot of resistivity to diameter indicates the effect of surface accumulation of high concentration electronics. The other hand, we have measured Photoconductance property of InN nanowire.

並列關鍵字

InN nanowire transport

參考文獻


1. A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, T. Saitoh “HEREROEPITAXIAL GROWTH OF InN ON Si(111) USING A GaAs INTERMEDIATE LAYER ” Solid-State Electronics, 41, No. 2, 149(1997)
2. N. Dietz, M. Alevli1, V. Woods, M. Strassburg, H. Kang, I. T. Ferguson “The characterization of InN growth underhigh-pressure CVD conditions” phys. stat. sol. (b) 242, No.15, 2985 (2005)
3. F. H. Yang, J. S. Hwang, K. H. Chen, Y. J. Yang, T. H. Lee, L.G. Hwa, L. C. Chen “High growth rate deposition of oriented hexagonal InN films” Thin Solid Films, 405, 194 (2002)
4. J. S. Hwang, C. H. Lee, F. H. Yang, K. H. Chen, L. G. Hwa, Y. J. Yang, L. C. Chen “Resistive heated MOCVD deposition of InN films” Materials Chemistry and Physics, 72, 290 (2001)
5. T. Kehagias, A. Delimitis, P. Komninou “Misfit accommodation of compact and columnar InN epilayers grown on Ga-face GaN .0001. by molecular-beam epitaxy” Appl. Phys. Lett., 86, 151905 (2005)

延伸閱讀