透過您的圖書館登入
IP:3.147.54.242
  • 學位論文

利用對流性自組形成之奈米球微影術 製作週期性圖案化藍寶石基板

Utilizing nanosphere lithography by convective self-assembly method for fabrication of periodic patterned sapphire substrate

指導教授 : 李允立

摘要


隨著奈米科技逐漸發展中,傳統實驗室使用之光微影術(photolithography)所能製作之結構的尺寸已逐漸不敷使用,然而一種嶄新的技術稱為奈米微影術(nanolithography)已被開發,在光電工程中,許多結構都利用此方法製作,例如:奈米柱狀(nano-pillar)結構、奈米光罩(nanomasks)等等,然而在奈米微影術當中,奈米球微影術是最廣為使用的一種技術,此技術不僅僅可以製作出二維、三維的光子晶體(photonic crystal),也可利用此技術製作出週期性的金屬圖案光柵,藉由偶合發光層發出之光線及表面電漿波(localized surface plasmon resonance)增強主動元件其發光效率。 在目前氮化物發光二極體(nitride light-emitting diode)中,主要使用做為基板的材料為藍寶石(sapphire)基板。而在本研究中,我們利用奈米球微影術之技術,將週期性奈米尺寸之圖案轉移至藍寶石基板上,並利用濕式蝕刻之技術對我們的藍寶石基板進行蝕刻。經由研究發現,製作圖案化之藍寶石基板(patterned sapphire substrate)可增進氮化物發光二極體之發光效率,而目前有兩種主要之論點可作為發光效率增進之解釋: (1)利用側向磊晶生長於圖案化藍寶石基板(lateral epitaxial patterned sapphire)可使氮化物發光層在後續的磊晶過程中得到較少的線缺陷,因而增進自發性輻射之比例,增進發光二極體之內部量子效應(internal quantum efficiency)。(2)由於圖案化藍寶石基板之形狀異於未做圖案化之藍寶石基板,因此當光線由發光層入射於其與空氣之介面時,其入射角度較小,發生全反射之機率也減小,因此增進發光二極體之光萃取效率(light extraction efficiency)。

並列摘要


As electronic devices become smaller, the traditional photolithography technology is not available to fabricate nanometer-scale structure. Nevertheless, a new technology called nanolithography is growing up nowadays. Nanostructures fabricated by nanomasks, such as naorods, nanowires, etc. are applied in optoelectronics widely. The nanosphere lithography (NSL) is one of the techniques in nanolithography which can fabricate two-dimensional and three-dimensional photonic crystal in order to manipulate the light propagating in the way we desire or fabricating periodic metal arrays which induce localized surface plasmon resonance (LSPR). It can also be used in bio-sensor and to enhance Raman spectroscopy. For our purpose, we utilize the nanospheres as the nanomasks to fabricate patterned sapphire substrate (PSS), which can be further grown by gallium nitride (GaN) laterally as a lateral epitaxial patterned sapphire (LEPS). Less threading dislocation density of nitride-based light-emitting diode (LED) is found using lateral epitaxy technique, dislocation density in active region decides the carrier lifetime, mobility and the most important characteristic in LED --- the radiative recombination rate. As the dislocation density decreases, the radiative recombination rates increases which leads to higher internal quantum efficiency. Nevertheless, the enhanced light output of LED is not only due to the increment of internal quantum efficiency but also the light extraction efficiency, lights scattered at the interface between PSS and nitride epilayers may escape into air instead of absorbed by underneath metal contact.

參考文獻


[37] 羅閔馨, “濕式化學蝕刻技術用於氮化鎵發光二極體藍寶石基板移除與圖案化藍寶石基板之製作”,國立台灣大學 光電所 碩士研究論文 (2008)
[2] N. Holonyak, Jr. and S.F.Bevacqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions”, Appl. Phys. Lett.1,4 (1962)
[3] Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa and Shin-ichi Nagahama, Jpn. J. Appl. Phys. 34, L797-L799 (1995)
[5] E. F. Schubert, "Light-Emitting Diodes" 2nd ed., Cambridge (2006)
[6] Maruska H. P. and Tietjen J. J. "The preparation and properties of vapour-deposited single-crystalline GaN" Appl. Phys. Lett. 15, 327 (1969)

延伸閱讀