透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

燒烤餐飲油煙空氣污染物排放係數研究

Emission Factor of Air Pollutants from Charcoal Barbecue

指導教授 : 李慧梅
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


著社會結構及國人飲食習慣改變,外食人口比例大幅增加,各類型餐廳如雨後春筍般設立,然而這些餐廳中又以燒烤餐飲油煙最易遭受民眾陳情。因此,為瞭解室內燒烤餐飲方式之空氣污染物,本研究選用三種木炭(炭精、備長炭及龍眼木炭),置於管狀高溫爐進行燃燒實驗,設定燃燒溫度為425℃、500℃,並於燃燒期間淋滴豬油、烤肉醬、油醬等醬料,探討燃燒溫度、木炭種類及淋滴醬料與未淋滴等變因對於各項污染物排放是否具有差異。利用粉塵監測儀、多氣體分析儀、DNPH、Tenax–TA等收集燃燒所產生之HC、CO、CO2、NOx、PM2.5、醛類化合物、揮發性有機物及重金屬等污染物濃度,並將其換算為排放係數進行討論,最後選出適合燒烤用之木炭供參考。 425℃及500℃燃燒結果顯示,炭精在CO、NOX、PM2.5、甲醛、苯、甲苯、鋁、銅及鋅受燃燒溫度影響(p-value<0.05),除CO、甲醛及鋁外,其他污染物排放係數隨燃燒溫度提高而增加;龍眼木炭則是在HC、CO、PM2.5、甲醛、乙醛、鋁、鐵及鋅受燃燒溫度影響(p-value<0.05),當中僅重金屬隨燃燒溫度提高而增加。 在500℃木炭種類燃燒差異結果顯示,除PM2.5、揮發性有機物、鉻及銅外,木炭種類對於各污染物(HC、CO、CO2、NOx、甲醛、乙醛、鋁、鐵及鋅)之排放係數均具有顯著差異(p-value<0.05)。木炭燃燒差異之污染物排放係數大小依序為HC (mg/kg):龍眼木炭(3215.38~10041.16)>備長炭(1085.43~3885.77)>炭精(686.20~2486.22),CO (g/kg):炭精(225.36~268.64)>龍眼木炭(201.86~252.13)>備長炭(124.28~163.17),CO2(g/kg):備長炭(2237.61~2746.50)>炭精(1813.14~2205.12)>龍眼木炭(1746.94~2117.64),NOx(mg/kg):炭精(204.54~380.87)>備長炭(223.93~310.56)>龍眼木炭(145.99~223.93),甲醛(mg/kg):備長炭(24.84~80.72)>龍眼木炭(20.71~50.55)>炭精(20.62~45.63),乙醛(mg/kg):炭精(12.97~355.24)>龍眼木炭(36.43~213.40)>備長炭(12.71~162.88),鋁(μg/kg):龍眼木炭(5228.14~6661.21)>炭精(2452.76~3539)>備長炭(1144.13~3330.02),鐵(μg/kg):龍眼木炭(1942.10~2287.75)>備長炭(1538.28~2147.56)>炭精(1736.19~2050.01),鋅(μg/kg):炭精(1491.79~1739.74)>龍眼木炭(1490.70~1621.11)>備長炭(418.59~505.29)。 最後木炭淋滴醬料與未淋滴差異結果顯示,兩種溫度下,在HC、PM2.5、甲醛、乙醛、苯、甲苯排放係數具顯著差異(p-value<0.05)。當中又以500℃淋滴豬油後之排放最為嚴重。500℃淋滴豬油後HC排放係數(mg/kg) (2486.22~9305.23) 分別較未淋滴(1085.43~5273.42)及淋滴烤肉醬(815.37~3215.38)增加約76%~176%、107%~204%;500℃PM2.5排放係數(mg/kg)方面,淋滴豬油後(3083.39~3926.48)分別較未淋滴(161.31~495.11)及淋滴烤肉醬(331.83~1364.94)增加約8~19倍、2~12倍;甲醛排放係數(mg/kg),淋滴豬油後(45.63~80.72)較未淋滴(24.84~33.11)增加約80%~225%,乙醛排放係數(mg/kg)淋滴豬油後(128.17~164.43)較未淋滴(12.71~36.43)增加約3~12倍;苯排放係數(mg/kg)淋滴豬油後(20.72~48.24)較未淋滴(4.00~8.25)增加約2~11倍,甲苯排放係數(mg/kg)淋滴豬油後(12.15~28.93)較未淋滴(1.12~6.92)增加約2~25倍。 整體來說,當燃燒溫度較低時,龍眼木炭污染物排放係數會顯著增加,炭精則是降低。木炭種類方面,則是燃燒龍眼木炭會較其他木炭嚴重,在淋滴醬料方面,以淋滴豬油後之污染物排放會較未淋滴及淋滴烤肉醬嚴重。因此進行燒烤時,應避免油汁直接與高溫炭火接觸。最後針對燒烤木炭選擇方面,應以備長炭為較合適之選擇,但考量備長炭價格是其他兩種木炭的10倍,因此本研究建議燒烤應以炭精為較適合之木炭。

並列摘要


Due to the change of society structure and people's eating habits, the proportion of eating-out population has increased significantly, which facilitates all kinds of restaurants to the market. Among these restaurants, BBQ-indoor restaurants are complained more often with their fumes than others. Therefore, in order to know well the air pollutant from BBQ meal, there are three kinds of charcoal (charcoal, binchotan, and longan charcoal) selected to be experimented in this study. The combustion experiment was carried out in a tube furnace with high temperature at 425 ℃ and 500 ℃. During the combustion period, the lard, BBQ sauce and oil sauce were selected to be added as well to analyze the pollutant difference of combustion temperature, charcoal species, grilling with sauce and without sauce. Through the method of EPAM-5000, HM-5000, DNPH and Tenax-TA, HC, CO, CO2, NOx, PM2.5, aldehyde compounds, volatile organic compounds and heavy metals produced by combustion could be collected and be converted to the emission factor for further study. As the result, we could choose the charcoal suitable for BBQ as reference. In summary of the experiments, CO, NOX, PM2.5, formaldehyde, benzene, toluene, aluminum, copper and zinc in charcoal are affected by combustion temperatures(p-value <0.05); except for CO, formaldehyde and aluminum, other pollutants average emission factors increase with higher combustion temperature. HC, CO, PM2.5, formaldehyde, acetaldehyde, aluminum, iron and zinc in longan charcoal are affected by combustion temperatures(p-value <0.05) as well and the heavy metal average emission factors increase with higher combustion temperature. The experiment result with 500℃ combustion shows there are significant differences (p-value<0.05) from the average emission factors of pollutants (HC, CO, CO2, NOx, formaldehyde, acetaldehyde, aluminum, iron and zinc) except for PM2.5, volatile organic compounds, chromium and copper in 3 species of charcoals (charcoal, binchotan, and longan charcoal). The HC (mg/kg) average emission factors in order is: longan charcoal (3215.38~10041.16) > binchotan (1085.43~3885.77) > charcoal (686.20~2486.22). The CO (g/kg) average emission factors in order is: charcoal (225.36~268.64) > longan charcoal (201.86~252.13) > binchotan (124.28~163.17). The CO2(g/kg) average emission factors in order is: binchotan (2237.61~2746.50) > charcoal (1813.14~2205.12) > longan charcoal (1746.94~2117.64). The NOx(mg/kg) average emission factors in order is: charcoal (204.54~380.87) > binchotan (223.93~310.56) > longan charcoal (145.99~223.93). The formaldehyde (mg/kg) average emission factors in order is: binchotan (24.84~80.72) > longan charcoal (20.71~50.55) > charcoal (20.62~45.63). The acetaldehyde (mg/kg) average emission factors in order is: charcoal (12.97~355.24) > longan charcoal (36.43~213.40) > binchotan (12.71~162.88). The aluminum (μg/kg) average emission factors in order is: longan charcoal (5228.14~6661.21) > charcoal (2452.76~3539) > binchotan (1144.13~3330.02). The iron (μg/kg) average emission factors in order is: longan charcoal (1942.10~2287.75) > binchotan (1538.28~2147.56) > charcoal (1736.19~2050.01). The zinc (μg/kg) average emission factors in order is: charcoal (1491.79~1739.74) > longan charcoal (1490.70~1621.11) > binchotan (418.59~505.29). The experiment result from adding sauce and no sauce shows HC, PM2.5, formaldehyde, acetaldehyde, benzene, toluene average emission factors have significant difference (p-value<0.05) both in 425 ℃ and 500 ℃ combustion especially adding the lard. HC (mg/kg) average emission factor after adding lard increases by 76%~176% compared to no sauce and 107%~204% compared to adding BBQ sauce. PM2.5 (mg/kg) average emission factor after adding lard increases by 8~19 times compared to no sauce and 2 ~ 12 times compared to adding BBQ sauce. Formaldehyde (mg/kg) average emission factor after adding lard increases by 80%~225% compared to no sauce. Acetaldehyde (mg/kg) average emission factor after adding lard increases by 3 ~ 12 times compared to no sauce. Benzene (mg/kg) average emission factor after adding lard increases by 2 ~ 11 times compared to no sauce. Toluene (mg/kg) average emission factor after adding lard increases by 2 ~ 25 times compared to no sauce. In summary, the pollutants average emission factors in longan charcoal increase obviously and the ones in charcoal decrease in combustion with lower temperature. For comparison of the charcoal species in combustion, the pollutants average emission factors in longan charcoal are more than the ones in charcoal and binchotan. For comparison of sauce adding in combustion, the pollutants average emission factors in adding lard are more than the ones in no sauce and adding BBQ sauce experiments. Therefore, it’s suggested to avoid sauce directly adding on the charcoal with high temperature during combustion. As to choices of charcoal species, the binchotan is more suitable used in BBQ-indoor meal; however, it’s suggested to choose charcoal in this study due to the high cost of binchotan which is more expensive by 10 times than charcoal.

參考文獻


58. Wang, G., Cheng, S., Wei, W., Wen, W., Wang, X., & Yao, S. (2015). Chemical Characteristics of Fine Particles Emitted from Different Chinese Cooking Styles. Aerosol and Air Quality Research, 15(6S), 2357-2366.
72. 吳奉書。(2014)。室內木炭燃燒產生空氣污染物之研究。國立臺灣大學環境工程學研究所學位論文,,1-150。
75. 杜紹輔。(2015)。室內燒烤空氣污染物排放因子之研究。國立臺灣大學環境工程學研究所學位論文,1-155。
86. 楊婉君。(2007)。餐廳工作人員油煙暴露評估研究。國立臺灣大學職業醫學與工業衛生研究所碩士學位論文,1-110。
1. Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review. Atmospheric Environment, 71, 260-294.

延伸閱讀