透過您的圖書館登入
IP:18.227.105.147
  • 學位論文

應用於金氧半導體汽車雷達發射機之雙模與雙頻電路技術

Dual-Mode and Dual-Band Circuit Techniques for CMOS Automotive Radar Transmitter Applications

指導教授 : 呂良鴻

摘要


本篇論文針對金氧半導體汽車雷達發射機開發出具雙模與雙頻功能之電路技術。第一項技術的開發源自於達成所提出77-GHz 頻率調變連續波雷達收發機的頻率規劃。此技術藉由一個19-GHz整數N型鎖相迴路和頻率調變迴路,在無額外硬體的狀況下,可以同時產生出系統所需的19-GHz正弦波和19-19.5 GHz的頻率調變連續波。第二項技術是針對現今22–29 GHz短距脈衝波雷達和76–77 GHz長距頻率調變連續波雷達所需訊號進行設計。利用第一項技術的概念,將壓控振盪器和除頻器進行修改,並搭配注入鎖定三倍頻器的使用,系統所需的K頻段正弦載波和W頻段的頻率調變連續波可以被同時產生出來。除此之外,本篇論文也呈現了一個新型的24/77-GHz雙模功率放大器架構。藉由系統化分析此兩頻段電晶體所需的最佳負載阻抗,建立一個硬體可以被重複利用之雙頻雙路功率結合器。除此之外,此電路藉由電晶體開關的使用,將兩頻段所需的輸入匹配網路也被重新合併成同一份硬體。

並列摘要


In this thesis, dual-mode and dual-band circuit techniques for CMOS automotive radar transmitter applications are developed. The first technique is motivated by facilitating the frequency planning of a novel 77-GHz FMCW transceiver architecture. By means of a 19-GHz integer-N phase-locked loop along with a frequency modulation loop, the required 19-GHz sinusoidal signal and 19–19.5 GHz FMCW frequency chirp can be generated simultaneously without excessive hardware overhead. The second technique targets on the concurrent operation for 22–29 GHz short-range pulse radar and 76–77 GHz long-range FMCW radar. Based on the previous signal generation concept, the required K-band sinusoidal carrier and W-band FMCW frequency chirp can be provided simultaneously. Besides signal generators, a novel 24/77-GHz dual-band PA topology is presented. By exploring the optimal load impedance for both bands in a systematic manner, on-chip passive devices for the output matching network is effectively reused. As a result, a two-way power-combing scheme for dual-band operation is established. In addition, the bulky input matching networks of a 24-GHz and a 77-GHz PA are amalgamated into the same hardware by introducing MOS switches for reconfiguration.

參考文獻


[3] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
[4] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77GHz FMCW radar transceiver in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
[5] T.-N. Luo, C.-H. E. Wu, and Y.-J. E. Chen, “A 77-GHz CMOS automotive radar transceiver with anti-interference function,” IEEE Trans. Circuits Syst. I, Reg. Pa-pers, vol. 45, no. 12, pp. 3247–3255, Dec. 2013.
[6] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Sol-id-State Circuits, vol. 44, pp. 3469–3485, Dec. 2009.
[7] K.-H. Chen, C. Lee, and S.-I. Liu, “A dual-band 61.4–63 GHz/75.5–77.5 GHz CMOS receiver in a 90 nm technology,” in VLSI Circuits Symp. Dig., Jun. 2008, pp. 160–161.

延伸閱讀