透過您的圖書館登入
IP:3.12.146.12
  • 學位論文

使用金奈米粒子之光聲定量流速估測方法

Photoacoustic Quantitative Flow Estimation Using Gold Nanoparticles

指導教授 : 李百祺

摘要


在本研究中,金奈米粒子被應用在分子光聲影像領域。光聲影像是一新進發展之影像技術,它結合了光學影像之高對比解析度及超音波影像之高空間解析度等優點。雖然有這些優點,光聲影像之應用到目前為止仍以組織型態之影像為主。我們的目的在於結合光聲成像技術以及奈米科技,建立出一套非侵入式、可觀測生物功能性影像的系統。在本論文之研究中,首先以Nd-YAG雷射波長532 nm之光束作為照射光源,中心頻率3.5 MHz之超音波探頭為聲波接收器,基於稀釋原理,以直徑40 nm之金奈米球做為光聲影像對比劑,進行定量流速估測,流量大小包括3 ml/sec、2.14 ml/sec、1.2 ml/sec、0.61 ml/sec、0.45 ml/sec、0.33 ml/sec以及0.23 ml/sec,以30毫升之空心球體當作待測系統,進行wash-out時間-強度曲線的量測;另一部分以Nd-YAG雷射1064 nm之光束為照射光源,中心頻率1 MHz之超音波探頭接收,以光吸收峰值為1018 nm之奈米桿為光聲對比劑,基於對比劑破壞-補充模型,進行wash-in時間-強度曲線量測,流速大小包括0.283 cm/sec、0.142 cm/sec、0.071 cm/sec、0.035 cm/sec以及0.018 cm/sec。比較各流速下時間-強度曲線中與流速相關參數與理論值的差異,在wash-out方式中,對比劑平均通過時間與理論值所計算之相關係數皆高達0.97以上;在wash-in方式中,計算所得流速與實際之流速之相關係數皆在0.96以上。在實際的應用,wash-out以及wash-in時間-強度曲線分別可以適用於不同的情況,但兩者的結果皆顯示了以時間-強度曲線法相對性流速量測之能力。在wash-out分析部份,空心球體的體積大小與輸入為瞬間注射的假設皆影響了此方法的實際應用,wash-in方法能夠改善以上的問題。此外,金奈米粒子濃度與光聲訊號強度之線性度,金奈米粒子對於光照射特性的差異,都影響了使用本方法在流速測量上的準確性。在未來工作上,將進行in vitro以及in vivo的實驗,靈敏度的提升以及生物相容性的驗證將是工作的重點。

並列摘要


In this research, photoacoustic imaging techniques using gold nanoparticles are investigated. Photoacoustic imaging is a newly developed imaging technique. It combines the high contrast resolution of optical imaging and high spatial resolution of ultrasound imaging. However, the applications of photoacoustic imaging to date focus mainly on morphological imaging. Thus, constructing a non-invasive, blood flow related functional imaging system is the goal of this research. In the first part of this study, at first a pulsed Nd-YAG laser of a wavelength at 532 nm is used for laser irradiation and an ultrasound transducer of center frequency 3.5 MHz is used for acoustic detection (wash-out analyses). Based on the indicator-dilution theory, 40 nm gold nanospheres are used as the contrast agent for photoacoustic imaging. The actual flow rates are 3 ml/sec, 2.14 ml/sec, 1.2 ml/sec, 0.61 ml/sec, 0.45 ml/sec, 0.33 ml/sec, and 0.23 ml/sec. The mixing chamber of 30 ml is used. The wash-out time-intensity curve (TIC) is obtained to estimate the flow rate. In the second part of this study, a pulsed Nd-YAG laser of wavelength 1064 nm is used for laser irradiation and an ultrasound transducer of center frequency 1 MHz is used for acoustic detection (wash-in analyses). Based on the destruction-replenishment model, gold nanorods of absorption peak at 1018 nm are used as the contrast agent. The wash-in TIC is obtained to estimate the flow rate. The actual flow rates are 0.283 cm/sec, 0.142 cm/sec, 0.071 cm/sec, 0.035 cm/sec and 0.018 cm/sec. The flow parameters derived from the TIC among different flows rate are compared. The correlation coefficients between the mean transmit time derived from the wash-out TIC and the theoretical values are above 0.97. And the correlation coefficients between flow rates calculated from the wash-in TIC and the real flow rates are all above 0.96. Although wash-out TIC and wash-in TIC methods can be used in different applications, the results show that the wash-out TIC method is affected by the effective volume of the mixing chamber and the assumption of bolus injection. In practical applications, these issues can be resolved by the wash-in TIC method. The linearity between the concentration and signal amplitude of gold nanoparticles and the properties of gold nanoparticles under the laser radiation are also discussed for their effects on flow rate measurements. Future works will focus on improving the sensitivity for in vitro and in vivo applications. In addition, the biocompatibility tests of gold nanoparticles will be performed.

參考文獻


[2] Joel J. Niederhauser, “Comparison of laser-induced and classical ultrasound,” Proc. of SPIE, vol. 4960, 2003, pp.118-123.
[4] R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no.4 July 1999.
[5] Alexander A. Karabutov, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” Journal of Applied Physics, vol. 87, no. 4, Feb 2000.
[6] Lihong V. Wang, ”Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Bio., vol. 21, no.7, July 2003, pp. 803-806.
[9] Rinat O. Esenaliev, Irina V. Larina, Kirill V. Larin, Donald J. Deyo, Massoud Motamedi, and Donald S. Prough, “Optoacoustic technique for on invasive monitoring of blood oxygenation: a feasibility study,” Applied Optics, vol. 41, no. 22, Aug 2002, pp. 4722-4731.

被引用紀錄


王柏勛(2009)。高頻光聲影像系統及其小動物造影之應用〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2009.00707
呂虹緯(2018)。以光聲顯影劑進行超解析光聲定位顯微術之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201800538

延伸閱讀