透過您的圖書館登入
IP:3.147.86.123
  • 學位論文

半導體供應鏈網路配置模式之敏感度分析

Sensitivity Analysis on Semiconductor Supply Chain Network Configuration

指導教授 : 郭瑞祥
共同指導教授 : 蔣明晃

摘要


隨著科技進步以及生產趨勢轉向著重少量客製化,半導體供應鏈變得非常動態且敏感,以往傳統的生產規劃方法,很難對此動態的模式加以有效地管理規劃。因而綜合考量包括服務層級、工作變異、績效表現及績效控制的網路半導體供應鏈模型被發展出來,可以有效的描述半導體供應鏈的運作,進而規劃出最佳的配置模式。但是由於半導體供應鏈的極度複雜性,求解此模式必須花費極長的時間,若在供應鏈上有擾動,重新求解將緩不濟急,且供應鏈對容忍環境變異的資訊並不易得知。因此本論文想深入探究此半導體供應鏈模型的敏感度分析,特別是限制式寬裕區間的議題。 由於模型的目標函數為不定型的二次函數,並不具有二次規劃中半正定型函數的許多良好性質,故先要對目標函數轉換後,才能進行敏感度分析。本研究利用相似性轉換的方法,解決變數間交乘項的問題;再利用分段規劃的方法,對二次係數為負的變數做片段切割逼近,最後用半正定型的片段二次函數逼近原目標函數。接著應用沃夫對偶定理的性質,進行此半導體供應鏈模型的敏感度分析。在考量各種不同擾動後,將可得到最佳配置模式下的各限制條件的寬裕區間,並從中分析得到半導體供應鏈的敏感因子。最後,可利用所得到的資訊,建立起此半導體供應鏈之監控機制。

並列摘要


Semiconductor supply chain operations are very sophisticated and dynamic so that they are hard to be described precisely by traditional scheduling and planning methods. In order to elucidate the behavior of these operations of semiconductor supply chain network, a new behavior model, which takes quality of services, adaptability to process varieties, engineering changes, controllability and scalability of performance metrics into consideration, was developed. This then allows us to find the optimal supply chain configuration. However, by exploring the tolerance of environment disturbance, the impact of these disturbances on optimal supply chain model can be obtained without resolving the model due to the computational complexity of the model. Thus, this thesis intends to look into the issues of range of feasibility of this semiconductor supply chain model. Unfortunately, the objective function of our supply chain model is indefinite quadratic even though we know that the positive semi-definite property is useful in the sensitivity analysis of quadratic programming. Therefore, we propose an approach that an indefinite function is initially transformed and approximated by separable programming and piecewise positive semi-definite functions such that the sensitivity analysis can be performed by applying the Wolfe-duality theory. Next, the feasibility ranges of all the constraints in the optimal configuration under different scenarios of perturbation can easily be explored. Moreover, the critical factors of the supply chain can be identified according to the sensitivity analysis results. Finally, with all these results, a possible monitoring mechanism can be developed for making quick adjustments if any inefficiency is detected.

參考文獻


[37]. 鄭孟哲, 半導體供應鏈路徑配置之多目標最佳化模式. 2005.
[1]. Auslender, A. and P. Coutat, Sensitivity analysis for generalized linear-quadratic problems. Journal of Optimization Theory and Applications, 1996. 88(3): p. 541-559.
[4]. Berkelaar, A.B., K. Roos, and T. Terlaky, The optimal partition and optimal set approach to linear and quadratic programming. 1996, Erasmus University Rotterdam, Econometric Institute.
[5]. Boot, J.C.G., Binding Constraint Procedures of Quadratic Programming. Econometrica: Journal of the Econometric Society, 1963. 31(3): p. 464-498.
[6]. Boot, J.C.G., On Sensitivity Analysis in Convex Quadratic Programming Problems. Operations Research, 1963. 11(5): p. 771-786.

被引用紀錄


郭美嫺(2007)。考量產能限制之供應鏈層級存貨監督機制〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.01863

延伸閱讀