透過您的圖書館登入
IP:18.216.196.208
  • 學位論文

資料探勘於交通事故之應用-以大客車為例

Data Mining in Traffic Accident-A Case Study for Bus

指導教授 : 許添本
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


臺灣地區道路交通工程不斷改進,運具方面的結構也有也改,然而運輸問題卻日益嚴重。根據警政署的統計資料,每年交通事故不斷的攀昇,平均約2800人死於交通事故,而大客車在每萬輛死肇肇事率都遠高於其他車種,所以一旦發生事故,其所造成的傷亡往往遠多於其他車種。 大客車事故頻傳的因素不外乎就是超速、酒醉駕車、違規駕駛、剎車失靈等,因此本研究嘗試資料探勘於交通事故之分析,探討大客車事故發生的主要因素。利用群集分析找出同質性最高的肇事集合,以此結果為基礎分析,並用卡方檢定驗證群集的正確性;然後套入判別分析中,作出其判別函數及預測其分類正確率,並找出影響大客車的肇事變數。   本研究採用警政署自民國92年至96年共六年全國大客車交通事故資料,資料總件數為15514件。研究結果為92至96年的訓練樣本和測試樣本的分類正確率都達90%以上,代表其判別率佳;影響六年的肇事變數為肇事原因、發生月份、道路類別、速限、分向設施為主要因素,其中,又以肇事原因佔的比例最高。在肇事原因中,主要發生的原因為變換車道或方向不當、未保持行車安全距踓、酒醉後駕駛失控、違反號誌管制或指揮、違反特定標誌(線)標制、其他駕駛人因素、非駕駛人因素,並針對此研究結果提出改善策略。

並列摘要


According to the statistic data from National Police Agency, traffic accidents increase year over year. Averagely, 2,800 people die in traffic accidents. Moreover, in every thousand cars that cause deadly car accidents, bus is the main trouble maker. Thus, once a car accident happens, bus accidents usually lead to more deaths than other car accidents. Bus accidents usually include speeding, drunk driving, driving against traffic regulations, and brake failing…etc. Therefore, in this thesis, I try to do traffic accidents analysis by using data mining, and figure out the main causes of bus accidents. In addition, I use cluster analysis to find out the most homogeneous class which causes bus accidents. As a result, I use chi-square test to verify the validity of the cluster and apply it to discriminant analysis which can determine the discriminant function and predict the accuracy of classification, so that the variable which causes bus accidents will come out. In this research, the bus accidents data from 2003 to 2007 are included; the total number of the data is 15514, which can be found in National Police Agency. The result of this research includes the Training Samples and the Test Samples from 2003 to 2007, which’s accuracy of classification are all over ninety percent. Therefore, the identification is quite excellent. The major variables which cause bus accidents from 2003 to 2007 are accident causes, which months, what kind of road, speed limit, and curb systems. Among these factors, accident causes are the most. And results for this strategy to improve.

參考文獻


5. U. M. Fayyad, G. Piatetsky-Shapiro and C. Matheus, “The KDD process for extracting useful knowledge from volumes of data”, Communication of the ACM, Vol.39, No.11, pp.27-34, 1992.
6. M. J. A. Berry and G. S. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, Wiley Publishing, Inc, 2000.
7. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publisher, Inc, 2001.
11. U. M. Fayyad, “Data mining and knowledge discovery: making sense out of data, ”IEEE expert, Vol. 11, No.5, pp.20-25, 1996.
14. L.K. Kao & C.C. Chiu, “Mining the customer credit by using the neural network model with classification and regression tree approach”, IFSA World Conqress and 20th NAFIPS International conference 2001 Joint 9th , Vol.2, pp.923-928, 2001.

被引用紀錄


許宏誠(2016)。應用決策樹法於摩托車事故之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201603681

延伸閱讀