透過您的圖書館登入
IP:18.117.81.240
  • 學位論文

量子點敏化二氧化鈦奈米柱陣列應用於太陽光光催化反應

Quantum-Dot-Sensitized Titanium Dioxide Nanorod Array Applied to Solar Photocatalytic Reaction

指導教授 : 劉雅瑄

摘要


在現今這個世代,全球暖化已經變成是一個全球性的議題。乾淨且可再利用的能源對人類來說是一個很重要的議題。光催化分解水製造氫氣生成是一種製造再生能源卻不產生污染的綠色產能方式,藉由研究這種產能方式,設計新式的光催化觸媒材料來改進產氫的效率是相當有意義的。 在本研究中,我們利用水熱法在透明導電FTO玻璃上製備高規則排列的一維二氧化鈦奈米柱陣列,並利用此材料作為水分解製氫反應中的光電極。由於二氧化鈦擁有寬廣的能隙間隔,在轉化太陽光為能量來源是很薄弱的。透過合成硫化鎘和硒化鎘作為量子點敏化二氧化鈦可以有效地延伸其能隙應答區間至可見光的範圍。實驗結果顯示,藉由硫化鎘敏化二氧化鈦奈米柱的改善,其光分解水製氫的效率可以由0.019%增進至2.455%,而硒化鎘的部分則可以由0.019%增進至0.916%。 除此之外,我們利用了基材是透明導電玻璃的特性,設計出雙層的模型,同時可以在一片導電玻璃的兩面分別沈積硫化鎘和硒化鎘兩種量子點來敏化二氧化鈦,此一目的是為了結合兩種不同量子點的特性,以改進光電極在光電化學電池中製氫的效率,和入射單色光子-電子轉化效率。在結合了兩種量子點的雙層模型中,可以有效地提升660 nm波段的光子-電子轉化效率至38.098 %。最後還利用量子點敏化的二氧化鈦進行光催化降解亞甲基藍的試驗,同樣有很好的效果。

並列摘要


Global warming has become a universal topic in these days. The clean and recyclable energy is an important topic for us. Hydrogen generation from photocatalytic water splitting is a green process that ensures generating energy without pollution. Therefore it’s vital to investigate the photoelectrode materials for improving its energy conversion efficiency. In this study, we fabricate highly ordered one-dimensional titanium oxide nanorod array on fluorine-doped tin oxide substrate by hydrothermal method as photoelectrode materials. Owing to its large band gap, titanium dioxide (TiO2) has been limited by its poor utilization of solar energy. Synthesis of cadmium sulfide (CdS) or cadmium selenide (CdSe) quantum dots as photosensitizer can successfully extended its photoresponse to visible light. The results showed that the photoconversion efficiency (η) of cadmium sulfide quantum dots coating on TiO2 nanorod increased from 0.019 to 2.455%, and the photoconversion efficiency of cadmium selenide quantum dots coating on TiO2 nanorod increased from 0.019 to 0.916%. In addition, due to the transparent substrate, we design a double-sided CdS and CdSe quantum dot cosensitized TiO2 nanorod photoanode for photoelectrochemical (PEC) hydrogen generation. The result also showed improvement for photoconversion efficiency, and incident-photon-to-current-conversion efficiency (IPCE). The double-sided model improves IPCE values to 38.098 % under visible spectrum 660 nm. It also exhibits well photocatalytic activity in the photodegradation of methylene blue under solar simulator illumination.

參考文獻


陳恭世, 「奈米顆粒敏化奈米晶體二氧化鈦之光電效應研究」,碩士論文,國立臺灣大學化學研究所碩士論文,2005。
陳思穎, 「選擇性催化加氫技術還原水中硝酸鹽為氮氣之研究」,碩士論文,國立臺灣大學工學院環境工程學研究所,2009。
郭至剛, 「板鈦礦晶相二氧化鈦之製備、鑑定與光化學應用」,碩士論文,國立臺灣大學理學院化學系,2009。
彭郁華, 「二氧化鈦奈米管氫能源製備系統之設計」,碩士論文,國立臺灣大學工學院材料科學與工程學系暨研究所,2008。
蕭光宏, 「二氧化鈦微結構對染料敏化太陽能電池光電效能的影響」,碩士論文,國立臺灣大學理學院化學系,2008。

延伸閱讀