透過您的圖書館登入
IP:18.117.216.229
  • 學位論文

常壓電漿燒結氧化錫/奈米碳管複合材料於超級電容之應用

Atmospheric-Pressure Plasma Jet Processed SnO2/CNT Nanocomposites for Supercapacitor Application

指導教授 : 陳建彰

摘要


本研究利用快速常壓電漿燒結製程,製作二氧化錫/奈米碳管複合材料並且運用到超級電容的電極上。奈米多孔隙二氧化錫/奈米碳管將料是由混合二氧化錫奈米粉末、奈米碳管、乙基纖維素(ethyl celluloses)和無水萜品醇(terpineol)等碳基有機物製成二氧化錫/奈米碳管奈米粒子膠體溶液,漿料經由網印後,再利用氮氣常壓噴射電漿進行燒結。隨著常壓電漿燒結時間增加,二氧化錫/奈米碳管複材的沾濕性也隨之增加(水接觸角變小),因此電解液可以有效地浸入奈米孔洞結構,提升超電容的儲能效率。常壓電漿燒結有兩種模式,固定載台及載台移動,其中固定載台單點燒結120秒其比電容可達188.42 F/g、載台移動(1.5 mm/s) 的燒結條件下,比電容可達89.6 F/g。我們成功將常壓電漿燒結應用在超級電容的電極上,常壓電漿不須真空腔體及泵浦且製程時間相對快速,在工業上的應用具有高度發展潛力的。

並列摘要


We demonsrate a supercapacitor made of nanoporous SnO2/CNT (carbon nanotube) composites that are sintered by nitrogen atmospheric pressure plasma jets (APPJs). The sreen-printing technique is first used to print a paste that contains SnO2 and CNT nanoparticles, ethyl celluloses, terpinoel. A nitrogen APPJ is then used to sinter the printed paste. With the increasing of APPJ sintering time, the wettability of SnO2/CNT composites also increases (lower water contact angle). Two different APPJ operation configurations are used in this study: one is with the stage fixed; the other is with a stage being scanned (moving stage, in order to process a sample with larger area). With the stage fixed, the best achieved specific capacitance is 188.42 F/g with 120 s processing duration. On the other hand, with the scanning stage, the best achieved specifnic capacitance is 89.6 F/g with 1.5 mm/s scanning speed. The scanning speed influences the processing time at a designated spot on the sample, thereby resulting in various properties of sintered SnO2/CNT composites. APPJ can be operated at a regular atmospheric pressure without using vacuum chambers and pumps that are expensive and require routine maintenance. Therefore, this technology has become a cost-effective tool readily for industrical application.

並列關鍵字

SnO2 CNT APPJ supercapacitor

參考文獻


[1] A. Yu, V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications: CRC Press, 2013.
[2] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature materials, vol. 7, pp. 845-854, 2008.
[3] C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, et al., "Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability," ACS nano, vol. 9, pp. 5198-5207, 2015.
[4] P. Kulal, D. Dubal, C. Lokhande, and V. Fulari, "Chemical synthesis of Fe2O3 thin films for supercapacitor application," Journal of Alloys and Compounds, vol. 509, pp. 2567-2571, 2011.
[5] Z. Li, T. Chang, G. Yun, and Y. Jia, "Coating single walled carbon nanotube with SnO2 and its electrochemical properties," Powder technology, vol. 224, pp. 306-310, 2012.

延伸閱讀