透過您的圖書館登入
IP:18.119.105.239
  • 學位論文

非共價鍵鍵結之量子化學計算與三氯甲烷之量子化學勢能計算與分子動力學模擬

Quantum Chemistry Calculated to Non-covalent bonding and Molecular Dynamics Simulation of liquid Chloroform

指導教授 : 趙聖德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在非共價鍵鍵結計算的部分,我們使用MP2/6-311++G**、MP2/aug-cc-pVTZ計算CF3H、CF3Cl、CF3Br和NH3、H2O、H2CS、H2CS、C2H4的單體最佳化結構。接著以CF3H、CF3Cl、CF3Br三種分子分別搭配NH3、H2O、H2CS、H2CS、C2H4五種分子形成雙體,以MP2/6-311++G**、MP2/aug-cc-pVTZ進行結構最佳化的計算,探討弱氫鍵、鹵素鍵的能量大小以及頻率變化。另外,為了探討同時含有鹵素原子和氫原子的四面體分子二聚體,我們將氟代甲烷(CH3F、CH2F2、CHF3、CF4)、氯代甲烷(CH3Cl、CH2Cl2、CHCl3、CCl4)、溴代甲烷(CH3Br、CH2Br2、CHBr3、CBr4)以MP2/6-311++G**、MP2/aug-cc-pVTZ進行單體最佳化結構計算,然後將氟代甲烷中的14種配對,進行雙體的最佳化結構計算,而氯代甲烷、溴代甲烷也依照此法進行計算。 在三氯甲烷的分子動力學模擬部分,我們使用MP2/aug-cc-PVQZ計算三氯甲烷分子的單體最佳化結構後,選取12個具有代表性的對稱構型(A~L),以自洽理論(Hartree-Fock,HF)、微擾理論(Møller-Plesset perturbation theory,MP)、密度泛函理論(Density Functional Theory,DFT)及耦合簇理論(Coupled Cluster Method,CC)等四種量子化學理論進行三氯甲烷分子二聚體之間的分子作用力計算,所有計算均加入了BSSE修正。其中,HF計算了排斥力、靜電力以及感應電磁力,而MP2則是計算出完整的位勢能曲線,接著再使用大範圍exchange-correlation functional 的配對並輔以基底函數aug-cc-PVTZ進行DFT的計算,將計算結果與MP2加以比較。另外,我們使用了11種基底函數,來測試不同的程度的極化項和擴散項,對我們氯仿二聚體能量曲線的影響,並使用四種方法計算其基底極限值(basis set limit)。 在完成量子化學計算後,我們使用5site Lennard-Jones potential model以及庫倫項來擬合量子化學計算得到氯仿分子的二聚體勢能曲線,並利用我們擬合的5sites model建構出力場,將其代入牛頓方程式進行分子動力學模擬,藉以得到氯仿的平衡性質及動態性質。我們模擬了氯仿的徑向分佈函數、速度自相關係數和擴散係數,並與實驗值以及現有的文獻比較,皆有相當不錯的準確度。這說明了以量子化學計算結果所建構出的力場來進行分子動力學模擬在實用性上有一定的可靠度。

並列摘要


The first topic of my research is quantum chemistry calculation to non-covalent bonding. At first, we optimize the monomer structures of CF3H、CF3Cl、CF3Br and NH3、H2O、H2CS、H2CS、C2H4 at the MP2/6-311++G**、MP2/aug-cc-pVTZ level. Then we optimize the structures of CF3Cl、CF3Br in the formation of complexes with NH3、H2O、H2CS、H2CS、C2H4, considering the clear relevance of halogen bond, and we optimize the structure of CF3H in the formation of complexes with NH3、H2O、H2CS、H2CS、C2H4, considering the clear relevance of weak hydrogen bond. We discuss the binding energy and C-X vibration frequency shift for halogen bonded complexes of chlorotrifluoromethane-related complexes and bromotrifluoromethane-related complexes. Then we also discuss the binding energy and C-H vibration frequency shift for weak hydrogen bond complexes of trifluoromethane-related complexes and compared with the halogen bonded complexes. In addition, halomethanes are tetrahedral structures that consist of halogen atom and hydrogen atom simultaneously. So we also perform optimization to fluorine-substituted methane dimer、chlorine-substituted methane dimer and bromine-substituted methane dimer. Then we had a discussion about the binding energy and stretching vibration frequencies shift for these halomethane dimer. The second topic of my research is molecular dynamics simulation of liquid chloroform. We have optimized the structure of chloroform monomer at MP2/aug-cc-pVQZ, and we also choose 12 symmetric conformers to calculate the intermolecular interaction potentials using the Hartree-Fock self-consistent theory(HF)、correlation-corrected second-order Møller-Plesset perturbation theory(MP2)、Density Functional theory(DFT), and the correction of the basis-set superposition error(BSSE) has been included. The HF calculation yields repulsion, electrostatics and induction energies, and the MP2 calculation shows complete molecular interaction potentials. Then we have carried out the DFT calculations by eighty combinations of exchange-correlation functional and compare with the result of MP2. Also, we have find the basis set effect is significant, and calculated the completed basis limit. After the quantum chemistry calculation is completed, we choose 5-sites Lennard-Jones potential model including the Coulomb term to fit the ab initio data. Then we construct the force field to perform the molecular dynamics simulation by the parameters we have found. We compared the radial distribution function (RDF),velocity autocorrelation function (VAF) and diffusion constant with experiment data and scientific literature. The simulation results are good in agreement with experiment data. It shows that using the quantum chemistry computation to perform molecular dynamics simulation can accurately reproduce the thermal properties.

參考文獻


[1] Gu, Y. Kar, T.; Scheiner, S. J .Am. Chem. Soc. 1999, 121, 9411.
[2] Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
[3] Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447
[4] Qian, W.; Krimm, S. J. Phys. Chem. A 2002, 106, 6628
[5] Guthrie F (1863) J. Chem. Soc. 16:239-244

延伸閱讀