透過您的圖書館登入
IP:3.137.214.24
  • 學位論文

超音波壓電換能器多層匹配結構之研析

Analysis of Multi-Matching Layers of Ultrasonic Piezoelectric Transducer

指導教授 : 宋家驥

摘要


在日新月異的生活中,超音波的應用已不可或缺,本文重點在探討超音波壓電換能器(Ultrasonic Piezoelectric Transducer)配置多層匹配層(Matching Layer),其壓電片聲阻抗(Acoustic Impedance)與聲傳介質聲阻抗匹配之設計概念。 本文首先介紹壓電理論,並說明超音波壓電換能器之各層結構材料,並藉由傳輸線(Transmission Line)原理,將匹配層等效為傳輸線,在最平坦化頻率響應(Maximally Flat-Top Response)條件下推導出於n層匹配層中,每一層匹配層的阻抗值,並得到匹配層越多層則使頻寬越寬之特性。再經由壓電片波傳方程式,推導出壓電換能器之阻抗矩陣(Impedance Matrix),並針對其阻抗矩陣之架構,利用聲波能量傳遞的觀念來分析換能器內部結構,進而提出一套傳輸矩陣法(Transmission Matrix Method),用以模擬壓電換能器多層匹配層結構的數值模型。 以傳輸矩陣之方式來模擬換能器,可得到換能器機械端輸出阻抗頻率響應圖其與聲傳介質阻抗匹配,也模擬出換能器的電端輸入阻抗與頻率的關係圖,故可用於設計換能器之參考標準。本論文成功地藉由傳輸矩陣法模擬出壓電換能器多層匹配層結構的理論架構及數值計算。

並列摘要


In recent years, the study of ultrasonic waves has found indispensable applications in the real world. In this thesis, we present the acoustic impedance matching result of the piezoelectric thin plate and the propagation medium when we increase the number of matching layers. To begin, we introduce the theory of piezoelectricity and explain the structure of the ultrasonic piezoelectric transducer. By extending the theory of transmission line, we find the impedances of the matching layer and find the impedances of each layer in conjunction with the maximally flat-top response. Finally, we conclude that the addition of the matching layers results in the widening of the transmission frequency for the piezoelectric transducer. An impedance matrix for the piezoelectric transducer can be derived from the piezoelectric wave equation which is called as the transmission matrix method. Using the transmission matrix method we obtain the mechanical and electric impedances of frequency response for the ultrasonic piezoelectric transducer. At the end of this paper, we show the simulation results of the multilayer matching structure of the piezoelectric transducer which can be helpful for designing the ultrasonic piezoelectric transducer.

參考文獻


[8]R.Krimholtz, D.A.Leedom and G.L.Matthaei, “New equivalent circuits elementary piezoelectric transducer”, Electron.Lett., Vol.6, No.13, pp.389-399, 1970.
[9]C. S. Desilets, J. D. Fraser, and G. S. Kino, “The design of efficient broad-band piezoelectric transducers,” IEEE Trans. Sonics Ultrason., Vol. SU-25, No. 3, pp.115–125, 1978.
[10]J. Souquet, P. Defranould and J.Desbois, “Design of Low-Loss Wide-Band Ultrasonic Transducers for Noninvasive Medical Application”, IEEE Trans. Sonics and Ultrasonics, Vol. su-26, No.2, pp.75-81, 1979.
[11]D. A. Hutchins and D. W. Schindel, “Advances in non-contact and air-coupled transducers”, in Proc. IEEE Ultrason. Symp., 1994, pp. 1245–1254.
[12]Anthony Gachagan, Gordon Hayward, Stephen P.Kelly, and Walter Galbraith, “Characterization of Air-coupled Transducers”, IEEE Transcations on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.43, No.4, July 1996.

被引用紀錄


劉桓嘉(2015)。相位式線陣列超音波換能器幾何參數對聲場之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.00687
潘郁婷(2015)。導波應用於離岸風機基樁之基礎研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.00685
林冠宇(2014)。超音波換能器匹配層之研析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.02392
郭章緯(2010)。壓電換能器與低頻管路換能器之有限元素分析與模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.03386

延伸閱讀