透過您的圖書館登入
IP:18.191.216.163
  • 學位論文

新型異質接面結構太陽能電池模擬

Novel Hetero Structure Solar Cell Simulation

指導教授 : 劉致為
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文中,探討異質接面結構太陽能電池,以模擬的方法進行研究,並嘗試改良其結構。 傳統矽晶太陽能電池的開路電壓可藉由導入一薄膜非晶矽層來得到改進,此非晶矽/晶圓之異質接面結構太陽能電池可減少暗電流並大幅增加開路電壓,使得太陽能電池之效率得到顯著的提昇。而結構之最佳化及改良也是值得研究之課題。 利用矽鍺合金作為背面場效材料,除了傳統之背面場效所能帶來的增益外,由於矽鍺合金之能隙較矽晶圓為小,可以吸收更寬廣之頻譜,產生額外的載子並貢獻於短路電流上。帶有本質薄層之異質接面太陽能電池雖可提昇效率,但此太陽能電池為日本三洋公司之專利,為了規避專利,我們提出一種新型結構、稱作異質射極太陽能電池。此結構為本實驗室所提出,且可解決一般異質接面結構太陽能電池所面臨之暗電流問題,藉由異質射極將復合電流減小,使本太陽能電池之效率可超越一般之晶圓型太陽能電池。

並列摘要


In this thesis, to study hetero structure solar cell, we use TCAD to simulate characteristics of solar cell, try to improve the structure and get better efficiency. Open-circuit voltage of traditional wafer cell can be improved by thin film amorphous silicon. Dark current of this amorphous silicon/wafer heterojunction structure solar cell can be suppressed and gain serious improvement of open-circuit voltage. Thus efficiency will be dramatically increased. The optimization and modification of cell structure is also our focus. Except improvement of traditional back surface field (BSF), by using silicon germanium (SiGe) for materials of back surface field, additional short-circuit current can be gain. Compare to silicon, smaller bandgap of silicon germanium can absorb broaden spectrum. More carrier can be generated and makes contribution on short-circuit current. Even though heterojunction with intrinsic thin-layer (HIT) can improve efficiency, HIT has been submitted as Sanyo’s pattern, a Japanese company. To bypass the pattern, we propose a novel structure called “Hetero Emitter”. It can decrease serious dark current by reduction of recombination term. Due to dark current reduction, the efficiency of Hetero Emitter can surpass traditional wafer cell.

參考文獻


[1] Martin A. Green, Solar Cells: Operating Principles, Technology and System Applications. (Prentice Hall PTR)
[2] Jenny Nelson, The Physics of Solar Cells. (2007 Imperial College Press)
[3] Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kimoshita, hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, Solar Energy Materials & Solar Cells. 93, (2009).
[4] Mikio Taguchi, Kunihiro Kawamoto, Sadaji Tsuge, Toshiaki Baba, Hitoshi Sakata, Masashi Morizane, Kenji Uchihashi, Noboru Nakamura, Seiichi Kiyama and Osamu Oota, Prog. Photovolt: Res. Appl. 8, (2000).
[1] Young-Woo Ok, Tae-Yeon Seong, Donghwan Kim, Sang-Kyun Kim, Jeong Chul Lee, Kyung Hoon Yoon and Jinsoo Song, Solar Cell Materials and Solar Cells. 91, (2007)

延伸閱讀