透過您的圖書館登入
IP:3.16.70.101
  • 學位論文

以氧電漿技術提昇靈敏度之原子級二硫化鉬氣體感測器

Sensitivity Enhancement of Atomic-layer MoS2 Gas Sensor Through Oxygen Plasma Treatment

指導教授 : 田維誠

摘要


本研究開發了新穎材料的揮發性氣體微感測器,其利用了原子級的二硫化鉬當作感測層製作出電阻式的氣體感測器,並使用了二維材料的轉印技術把原子級層的二硫化鉬轉印至由微機電技術(MEMS, Microelectromechanical Systems)製作的指叉狀金電極上,藉由量測電阻訊號來當作感測器對氣體反應的指標,成功的製作出可用於一般環境下檢測揮發性氣體的氣體感測器,在化學氣相沈積法(CVD, Chemical Vapor Deposition)成長二硫化鉬的過程中,由於原料配置的比例和薄膜成長的技術或是後端的電漿處理和表面改質等等,造成材料上面會產生不同種類及數目的空缺,經由改變溫度和光照等環境因素,並從文獻推論出空缺在二硫化鉬的氣體感測機制中扮演了重要的角色,並利用光致發光光光譜儀(Photoluminescence spectrometer)和靈敏度之間的關係來加以佐證。根據文獻,氧電漿可增加二硫化鉬薄膜表面缺陷的推論,本研究利用氧電漿技術,找出了最佳處理的時間和參數,處理過後的二硫化鉬氣體感測器具有良好的感測效能,在氣體生成系統上量測的範圍較廣。傳統的以金屬氧化物為感測材料的感測器在使用上,會設計一層加熱器,藉由加熱來增加氣體感測器的靈敏度,雖然可以有效的提升揮發性有機氣體的吸附和脫附,但在製程上需要額外設計一道光罩,而且在高溫的環境上,並不利於偵測爆炸性氣體。本研究開發出的氣體感測器能夠對能依氣體的分子結構產生不同的反應,故可應用於多種揮發性有機氣體的偵測,未來有潛力應用在環境檢測上。

並列摘要


A novel volatile organic compound (VOC) sensor with the MoS2 atomic-layers was developed in this research. Such sensor was made by transferring the MoS2 atomic-layers grown with the chemical vapor deposition (CVD) method onto the interdigitated electrode manufactured by microelectromechanical systems for indicating the sensing ability by the impedance change. The density of defects on the MoS2 film surface was controlled by the ratio of precursors and surface treatment. The sensing mechanism related to surface defects created was illustrated using the photoluminescence spectrometer. The surface defects were found to be increased with the increasing oxygen plasma treatment (OPT) cycles due to the increase of surface defects. An optimized number of OPT cycles was found to get the excellent gas detection performance. The treated MoS2 gas sensor exhibited the good performance, sensing range, and repeatability. The chemical compounds operated at different temperatures and intensity of light power were also observed. Traditional gas sensors utilizing metal oxide as the sensing material were typically equipped with a heater. Although the gas adsorption and desorption were increased by incorporating a heater, one more photo-masking and additional processing were required to define the heater. With the high temperature heating, it’s not desirable to integrate with CMOS-based circuits and use in explosive environment. In this work, we developed a MoS2-based gas senor which can detect methanol with high sensitivity at room temperature without the extra light-activation and react with many kinds of VOCs. Based on the structure of gas, the gas sensor has the different response that shows a great potential to the environment detection.

參考文獻


[6] 張宏維、周鈺禎、蔡顯仁、徐慧萍、施正雄。(2007) “表面聲波氣體感測器之研製與應用”。CHEMISTRY (The Chinese Chemical Society, Taipei) 65.4 : 487-498.
[1] Tian, F., Yang, S. X., & Dong, K. (2005). Circuit and noise analysis of odorant gas sensors in an E-nose. Sensors, 5(1), 85-96.
[2] Tzeng, T. H., Kuo, C. Y., Wang, S. Y., Huang, P. K., Huang, Y. M., Hsieh, W. C., Huang, Y. J., Kuo, P. H., Yu, S. A., Lee, S. C., Tseng, Y. J., Tian, W. C., Lu, S. S. (2016). A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection. IEEE Journal of Solid-State Circuits, 51(1), 259-272.
[4] Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H. (2012) A survey on gas sensing technology. Sensors 12.7 : 9635-9665.
[9] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150.

延伸閱讀