透過您的圖書館登入
IP:18.224.214.215
  • 學位論文

利用氣相沉積技術製備聚對二甲苯奈米級鍍膜及其在操控幹細胞生長以及分化之應用

Vapor-Deposited Nanometer-Thick Functionalized Poly-p-xylylene Coatings for Guiding Stem Cell Differentiation and Proliferation

指導教授 : 陳賢燁

摘要


生醫材料的改質需要結合物理、化學和生物線索,因應現代再生醫學,以操縱幹細胞生長。這些複雜的修飾仍然是一個挑戰,包括基底物限制、生物相容性以及幹細胞活性的通用。在本研究中,使用功能化的聚對二甲苯(PPX),以化學氣相沉積法進行表面改質,用於幹細胞的培養。該塗層提供了骨塑型蛋白(BMP-2)和纖維細胞生長因子(FGF-2)的共價結合能力,並且由於特定的活性,改質的表面使直接幹細胞分化和控制增殖成為可能。生長因子與馬來酰亞胺修飾的表面連接,偶聯反應在溫和條件下以高靈敏度且快速的動力學進行。 BMP-2 的結合密度約為 140 ng·cm-2,FGF-2 的結合密度約為 155 ng·cm-2。主導人類脂肪幹細胞(hADSCs)的活性是通過修飾表面來促進hADSC分化能力和增殖率。本研究中的塗層系統表現出生物相容性、不受基材影響的一致性和穩定性,並且它可以提供有效和多樣的介面平台,進一步用於生物醫學應用。

關鍵字

生醫材料 表面改質

並列摘要


Modifications of biomaterials based on the combination of chemical, physical, and biological cues for manipulating stem cell growth are needed for modern regenerative medicine. The exploitation of these sophisticated modifications remains a challenge, including substrate limitation, biocompatibility, and versatile and stem cell activities. In this report, a vapor-phase coating technique based on the functionalization of poly-p-xylylene (PPX) was used to generate a surface modification with stem cells in culture. The coating provided the ability for covalent conjugation that immobilized bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2), and the modified coating surfaces enabled direct stem cell differentiation and controlled proliferation. The ligations were realized between the growth factors and the maleimide-modified surface, and the conjugation reactions proceeded with high specificity and rapid kinetics under mild conditions. The conjugation densities were approximately 140 ng·cm−2 for BMP-2 and 155 ng·cm−2 for FGF-2. Guiding the activities of the human adipose-derived stem cells (hADSCs) was achieved by modifying surfaces to promote the hADSC differentiation capacity and proliferation rate. The reported coating system demonstrated biocompatibility, substrate-independent conformity, and stability, and it could provide an effective and versatile interface platform for further use in biomedical applications.

並列關鍵字

Modification Biomaterials

參考文獻


(1) Ito, Y.; Tada, S. Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013, 34 (31), 7565-74, DOI: 10.1016/j.biomaterials.2013.06.037.
(2) Fu, R. H.; Wang, Y. C.; Liu, S. P.; Huang, C. M.; Kang, Y. H.; Tsai, C. H.; Shyu, W. C.; Lin, S. Z. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 2011, 20 (1), 37-47, DOI: 10.3727/096368910X532756.
(3) Masters, K. S. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci 2011, 11 (9), 1149-63, DOI: 10.1002/mabi.201000505.
(4) Kusamori, K.; Takayama, Y.; Nishikawa, M. Stable Surface Modification of Mesenchymal Stem Cells Using the Avidin-Biotin Complex Technique. Curr Protoc Stem Cell Biol 2018, 47 (1), e66, DOI: 10.1002/cpsc.66.
(5) Sengupta, P.; Prasad, B. L. V. Surface Modification of Polymers for Tissue Engineering Applications: Arginine Acts as a Sticky Protein Equivalent for Viable Cell Accommodation. ACS Omega 2018, 3 (4), 4242-4251, DOI: 10.1021/acsomega.8b00215.

延伸閱讀