透過您的圖書館登入
IP:18.118.254.28
  • 學位論文

進食對大腸經之阻抗特性影響研究

Effect of Ingression on Impedance Properties of Large Intense Meridian

指導教授 : 傅昭銘

摘要


1950s年代,德國醫生Croon和日本的中谷義雄博士的研究分別發現,經絡穴道的皮膚電阻具有低於周邊皮膚電阻的現象。1977年, R.O. Becker博士使用交流訊號源,分析得到經絡穴道同時具有高電容的特性。本實驗室(傅昭銘教授)在先前的經絡穴道的電阻特性探討,以等效電路模型並輔以Cole-Cole模型從事分析,得到經絡穴道在各種刺激情況下的經絡穴道的等效電阻及等效電容特性變化,對經絡穴道物理性質瞭解提供深入探討的基礎。 本論文研究旨在探討:經絡於晝夜時辰、穴道補洩刺激及進食反應對經絡的交流阻抗特性影響,並以等效電路模型及Cole-Cole模型分析經絡穴道的等效電阻及等效電容特性。本研究實驗使用低電流及低電壓的阻抗分析儀,進行經絡穴道的交流阻抗的量測,並以串接兩組並聯RC電路模型從事分析。實驗結果得到: 一、 晝夜時辰與補洩實驗:在晝夜不同時辰,在手太陰肺經及手陽明大腸經施以的補洩的量測皆得到,補刺激會使經絡的實部阻抗上升和虛部阻抗下降;洩刺激會使經絡的實部阻抗下降和虛部阻抗上升。串並RC電路模型分析得到,補刺激會使經絡的等效電阻減少,洩刺激會使經絡的等效電阻上升,但補洩刺激對等效電容值的改變無甚影響。 二、 進食實驗:禁食(十四小時)後作進食對手太陰肺經與手陽明大腸經的交流阻抗變化實驗結果得到: (一)在進食前肺經與大腸經的阻抗呈現不同頻譜特性曲線,即肺經的實部與虛部阻抗的絕對值皆分別會隨頻率的增加而下降,而大腸經的實部阻抗會隨頻率的增加而下降,而虛部阻抗絕對值先由隨低頻增加而上升,至特定頻率時出現明顯吸收峰,繼之隨頻率增加而下降。 (二)在進食後,肺經的實部與虛部阻抗絕對值皆較進食前略為降低,但大腸經的實部阻抗隨時間上升,虛部阻抗則先下降後逐步上升到原來的兩倍,相對來說肺經的阻抗頻譜變化維持穩定。另也注意到大腸經的實部與虛部阻抗頻譜變化會略有擾動變化,約兩小時後才恢復穩定。 三、 定頻實驗:我們檢驗從前述實驗得到的吸收峰值頻率(~30Hz)與其他頻率之異同,發現在受到刺激的情況下,吸收峰值頻率阻抗的反應與其他頻率不同,未來我們將進一步檢驗低頻(<100Hz)與高頻(<100Hz)之差異。

關鍵字

交流阻抗特性 穴道 經絡

並列摘要


The purpose of this thesis is to investigate the effect of ingression on impedance properties of Large Intense Meridian, under either strengthen or draining treatment in different part of day. For this goal, we have performed experiments by measuring impedance spectra of meridians by impedance analyzer with low current and low voltage. Further, the impedance spectra of meridians were configured into the Cole-Cole diagram. To obtain characteristic properties of meridians, we implement equivalent circuit model to analyze the experimental impedance data. The equivalent resistance and capacitance of meridian can be obtained by best fitting of impedance spectra with equivalent circuit analysis composed of two parallel resistances and capacitances in series. The analyzed results are summarized as following: Part I: The time effect on LI and LU meridian under strengthen/draining treatment The impedance, which measured at different time in a day, have shown similar feature of variations in function of frequency. The real part of impedance is increased in subject upon strengthen treatment; whereas the imaginary part of impedance is decreased after strengthen treatment. On the other hand, the real part of impedance is decreased in subject upon draining treatment; whereas the imaginary part of impedance is decreased after draining treatment. The analyzed results of equivalent circuit model analysis have shown that, the equivalent resistance of meridian deceases upon strengthen treatment. In the contrary, the equivalent resistance of meridian increases upon draining treatment. The equivalent capacitance of meridian remain almost invariant after either strengthen or draining treatment. In addition, the impedance of LI meridian, measured at specific frequencies, has demonstrated that the stimulation on time variation of impedance at low frequency (~30Hz) is different from those at high frequency (400Hz and 600Hz ). Part II: The ingression effect on LI and LU meridian The impedance spectra of LI and LU meridian, which measured under 14 hour fasting, have demonstrated two distinct patterns of variations in function of frequency. The real part of impedance of LU meridian decreases with increasing frequency, whereas the imaginary impedance increases as frequency increases. On the other hand, for LI meridian, the real part of impedance decreases with increasing frequency. Whereas for the imaginary impedance, an absorption peak appears at certain frequency, then follows with decreases with increasing frequency. After ingression, the impedance spectra of LI and LU meridian have shown time dependent variations. The results of equivalent circuit analysis have shown that the equivalent resistance of LU meridan is almost invariant. On the other hand, the equivalent resistance of LI meridian varied dramatically while comparing values before and after ingression. The results implicate the LI meridian correlate to function of ingression.

並列關鍵字

Impedance acupuncture meridian

參考文獻


[1] Gabriel stux, Bruce pomeranz “Basic of Acupuncture : Third edition”. Canada:Springer,1995. ISBN:978-3-642-49113-9
[3] World Health Organization,”A Proposed Standard International Acupuncture Nomenclature: Report of a WHO scientific Group”,1991,
[8] R.O. Becker, M. Reichmanis, A. Marino,” Electrophysiological Correlates of Acupouncture Points and Meridians.”
[9] Kuo-Gen Chen,” Electrical Properties of Meridians”, IEEE Engineering in Medicine And Biology May/June 1996 P.58-63
[10] Ahn AC, Colbert AP, Anderson BJ, Martinsen OG, Hammerschlag R, Cina S, Wayne PM, Langevin HM,” Electrical properties of acupuncture points and meridians: a systematic review.” Bioelectromagnetics. 2008 May;29(4):245-256

延伸閱讀