透過您的圖書館登入
IP:3.146.221.204
  • 學位論文

外在光線影響身體代謝以及腸道菌相

External light influences metabolic status and gut microbiome profile

指導教授 : 陳示國

摘要


自從19世紀,電燈泡的發明為人們帶來許多的便利,然而它也卻引發了許多生理代謝的健康問題。在先前的文獻發現,光害嚴重的程度與人類肥胖有正相關的關係。然而,光線對如何影響代謝問題的機制不甚了解。其中腸道菌的研究日益增加,已經有許多文獻發現到腸道菌相可以受許多的外在變因給調控,並且腸道菌跟宿主的代謝功能息息相關。故我們想要利用操弄環境光線的變化以及使用不同基因型的老鼠,來去解答光線所引起的肥胖是否藉由改變腸道菌相所造成。我們的研究發現,夜晚光線確實會造成肥胖以及血糖耐受性降低的症狀,而這些症狀必須搭配吃食高脂飼料才會出現。同時,將來自夜晚照光小鼠的糞便樣本,管餵給無菌小鼠的實驗發現到腸道菌並不參與夜晚光線所引起的肥胖當中。而我們的實驗發現到了光線以及腸道菌相週期性的關係。外在光線的週期是調控腸道週期的關鍵因素,而不是宿主本身的生理時鐘。本研究排除了腸道菌為光線所引發的肥胖變因的可能,並且也提供了外在光線調控腸道菌相週期性的全新觀點。

並列摘要


In 19th century, Thomas Edison invented light bulbs which benefits human society. However, artificial light gives rise to many metabolic problems. Depending on previous studies, the severity of the light pollution is correlated with obesity. However, the mechanism of light-induced metabolic disorder remains unknown. many papers have discovered that many factors can modulate the microbial profile, and gut microbiome is relevant to metabolism of the host. The purpose of this study is to investigate the connection between light-induced obesity and gut microbiome by manipulating different light conditions and gene modified mice. Our findings suggested that dim light at night combined with high fat diet induced the metabolic deficits. Additionally, gut microbiome did not involve in light-induced obesity based on the result from germ-free mice transplanted with feces. For the relationship between light and gut microbiome, our work showed that external light cues are the critical factor to regulate the microbial rhythmicity instead of the output of the central clock. In conclusion, this study not only excludes the possibility that gut microbiome takes part in light-induced metabolic disorders but provides a whole new idea that external light can regulate microbial oscillation.

並列關鍵字

gut microbiome dim light at night circadian rhythm ipRGCs NGS

參考文獻


Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J. M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H. B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E. G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W. M. de Vos, S. Brunak, J. Dore, M. Antolin, F. Artiguenave, H. M. Blottiere, M. Almeida, C. Brechot, C. Cara, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, K. U. Foerstner, C. Friss, M. van de Guchte, E. Guedon, F. Haimet, W. Huber, J. van Hylckama-Vlieg, A. Jamet, C. Juste, G. Kaci, J. Knol, O. Lakhdari, S. Layec, K. Le Roux, E. Maguin, A. Merieux, R. Melo Minardi, C. M'Rini, J. Muller, R. Oozeer, J. Parkhill, P. Renault, M. Rescigno, N. Sanchez, S. Sunagawa, A. Torrejon, K. Turner, G. Vandemeulebrouck, E. Varela, Y. Winogradsky, G. Zeller, J. Weissenbach, S. D. Ehrlich and P. Bork (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. doi:10.1038/nature09944
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915-1920. doi:10.1126/science.1104816
Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., & Weaver, D. R. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron, 30(2), 525-536. doi:10.1016/s0896-6273(01)00302-6
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073. doi:10.1126/science.1067262
Bunger, M. K., L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B. Hogenesch, M. C. Simon, J. S. Takahashi and C. A. Bradfield (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 1009-1017. doi:10.1016/s0092-8674(00)00205-1

延伸閱讀