透過您的圖書館登入
IP:3.129.70.157
  • 學位論文

變剛性驅動器之發展與應用

Development and Application of Variable Stiffness Actuators

指導教授 : 黃漢邦
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要的目的,在發展不同於傳統工業機器手臂之擬人形機器手臂整合系統。此系統將可安裝於為不同目的而設計的機器人平台上,應用於不同環境中,取代人類或協助人類工作,甚至與人類進行安全的互動行為。 為了研發出一具備上述功能之多自由度擬人形機器手臂整合系統,本論文主要可分為兩大部分。第一部分將著重於模組化2軸驅動系統(DAMA)之機構設計與軟硬體架構建制,並藉由銜接三組該模組化2軸驅動系統,完成一擬人形6軸機器手臂之建置。而有鑑於傳統的致動器,無法同時滿足操作效能與安全互動之需求,本論文的第二部分將討論具安全互動行為機制的致動器與設計準則,提出可以滿足人機安全互動及提升系統效能的主動變剛性彈性驅動系統,並建立具有此特性之系統廣義線性數學模型,且進一步針對此一模型進行分析與控制器設計。最後分別設計製作出APVSEA、AVSEA與ADEA可自行調整輸出特性的主動變剛性彈性驅動器,以分別滿足安全與效能之需求。此設計將可取代傳統致動器,安裝於任一機器人系統上,以提升系統之性能。除擬人形機器手臂整合系統外,本文於最後將額外說明主動變剛性彈性驅動系統另一實質應用-手肘關節復健系統(AVSER)。 未來期許以本論文所發展的主動變剛性彈性驅動器來取代傳統致動器設計,安裝於所設計製作的多自由度擬人形機器手臂上,達到具有高操作效能仍可與人類進行安全的互動行為之設計目標。於復健系統則期許發展多關節手腳復健系統,達到具多關節復健功能之最終目標。

並列摘要


This dissertation aims to develop an integrated humanoid robot arm system that can be assembled into robot platforms designed for a variety of purposes, assisting, cooperating, and even interacting with humans in different fields and environments. The dissertation presents the development of this integrated system in two major parts. The first focuses on developing an integrated system for a vertically intersected dual-axis modularized actuator system (DAMA), which is applied to a 6-axis humanoid robot arm. This section does not carefully consider the safety of human-robot interaction. The second part discusses actuation design, focusing on achieving a proper level of safety in human-robot interaction, and proposes a new actuation approach, active variable stiffness elastic actuation (AVSEA). Several active variable stiffness elastic actuators (APVSEA, AVSEA, ADEA) are designed, offering a compromise between proper safety levels and high manipulation performance. The end section of the dissertation describes another application of active variable stiffness elastic actuators-the elbow rehabilitation system (AVSER). The research discussed involves the creation of a prototype for an active variable stiffness elastic actuator that has adjustable characteristics. It can be adapted to unknown environments and applied to the creation of a humanoid robot arm system that offers high levels of safety and performance.

參考文獻


[1] T. Fukuda and Y. Kawauchi, "Cellular robotic system(CEB0T) as one of the realization of self-organizing intelligent universal manipulator," Proc. IEEE International Conference on Robotics and Automation, University of Tsukuba, Japan, pp. 662-667. 1990.
[2] M. Yim, "New locomotion gaits," Proc. IEEE International Conference on Robotics and Automation, San Diego, California, USA, pp. 2508-2514. 1994.
[5] H. Sawada, and S. Matunaga, "Dynamics and control of space robot brachiating motion using handrails," Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 3065-3070. 2003.
[11] H. Murata, A. Kamimura and S. Kokajiet, "Hardware design of modular robotic system," Proc. IEEE/RSJ International Conference on Intelligent Robotics and Systems, Kagawa university, Takamatsu, Japan, pp. 2210-2217. 2000.
[13] E. Yoshida, S. Murata, and A. Kamimura, "Evolutionary synthesis of dynamic motion and reconfiguration process for a modular robot M-TRAN," Proc. IEEE International Conference on Computational Intelligence in Robotics and Automation, Kobe Portopia Hotel, Kobe, Japan, pp. 1004-1012. 2003.

延伸閱讀