透過您的圖書館登入
IP:18.118.254.28
  • 學位論文

全鈣鈦礦串疊型太陽能電池之接面與能隙優化

Interface and bandgap optimization toward all-perovskite tandem solar cell

指導教授 : 佳莉亞

摘要


太陽能因為其豐沛的能量以及在能量轉換的過程中的零碳排,近年來在新興能源中得到了不少矚目。而在研究領域中,鈣鈦礦太陽能電池由於其低成本、能隙可控性且具有大量製造的潛力等優點,而在近代開始蓬勃發展。此外,為了突破單能隙太陽電池所能達到的效率極限,在元件中使用超過一個能隙的串疊型太陽能電池的概念也開始被提出,而鈣鈦礦的能隙可控性也讓該材料在此項應用上更具發展價值。太陽能電池為多種材料依序塗佈而成的半導體元件,其中不同材料間的異質接面在元件的轉換效率上有著莫大的影響。本篇論文首先針對元件中電洞傳輸層與鈣鈦礦層間的接面作探討,並在兩層間塗佈不同的材料作為鈍化層。而材料中分子上羧基的有無被發現對於整體元件的性質有非常大的影響,羧基被認為可以與基板上的氧化物鍵結,並與鈣鈦礦反應以鈍化其表面的缺陷。此外,在研究中還發現羧基的引入可以很大程度的改變薄膜的親水性,進而對鈣鈦礦的結晶性有所幫助,除了很大程度的增進了實驗的再現性,最終也提高了元件的轉換效率。 鈣鈦礦串疊型太陽能電池是從寬能隙元件開始發展的,在論文的最後延續了上個電洞傳輸層與鈣鈦礦接面的研究,再藉由調整鈣鈦礦材料中溴的含量來控制元件的能隙,用以達到模擬研究中寬能隙元件的最佳能隙範圍,並在沒有任何參雜以及後處理的情況下達到良好的轉換效率,使其為之後發展鈣鈦礦串疊型太陽能電池的基礎。

並列摘要


The ubiquitous sunlight would be an important contributor to future energy consumption due to its vast abundance and zero-carbon emission when harvesting energy. Among all solar harvesting techniques, the low cost, tunable bandgap, and potential for future mass production make perovskite solar cells a popular research topic. Furthermore, in order to break the efficiency limit for single junction solar cells, the concept of tandem solar cells emerged in recent years. Therefore, perovskite with tunable bandgap shows huge potential in tandem application. Solar cell tandem devices are fabricated by depositing multiple layers sequentially, thus, the interfaces between the layers plays an important role in device performance. In this thesis, the interface between the hole transporting layer and perovskite was discussed and trying to coat a layer with different materials in between as a passivation layer. Result shows that the presence of carboxylic group in the material can largely affect the performance of device. Carboxylic group has ability to anchor the oxide and passivate perovskite surface at the same time, and resulting in a nice wetting property which not only improves the perovskite crystallinity but also shows a better reproducibility for solar cell devices. Perovskite tandem solar cells started from the development of wide bandgap devices. In the last part, the study of the passivation layer was extended to be used in wide bandgap perovskite solar cells. By controlling the Br ratio in the perovskite material, the bandgaps were tuned to the range which was the optimum obtained from simulations for wide bandgap devices. In the end, an efficient performance for wide bandgap devices were demonstrated to be a base for the research towards all-perovskite tandem solar cell.

參考文獻


1. Shafiee, S. Topal, E. When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009).
2. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).
3. Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °c and 2 °c. Earth System Dynamics 7, 327–351 (2016).
4. Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24, 38–50 (2019).
5. Blaschke, T., Biberacher, M., Gadocha, S. Schardinger, I. ‘Energy landscapes’: Meeting energy demands and human aspirations. Biomass and Bioenergy 55, 3–16 (2013).

延伸閱讀