透過您的圖書館登入
IP:18.188.48.106
  • 學位論文

翅膀強度對撲翼飛行之設計探討

An Investigation on the Design of Wing Stiffness of Flapping Flight

指導教授 : 王安邦

摘要


本文探討拍撲式飛行器翅膀強度對於飛行能力的影響,研究內容主要分成三大部分。第一部份為拍撲式飛行器氣動力學量測系統,此系統包含三維力與力矩量測天平、偵測尾流頻率變化的熱線測速儀以及觀察翅膀變形的高速攝影系統;第二部分探討拍撲式飛行器翼膜上骨架強度對於飛行推進力以及效率的影響,於自然界生物的尺寸和形狀中,參考昆蟲翅膀強度趨勢與蝙蝠翅膀形狀與構造,設計實驗參數。在實驗數據發現,翅膀前緣材料撓度(flexural stiffness, EI)越高,推進力越大;翼膜材料撓度則在適中的條件下有較高的推進效率。而整體拍撲行為在史徹赫數(Strouhal number)等於0.2時有較高的推進效率;第三部份為拍撲式飛行器的製作,成功自製出翼展70公分,展弦比5.8,重136公克之遙控拍撲式飛行器,目前飛行測試滯空時間可達10秒。本文同時發現拍撲式飛行速度增加時,推力增加能力與功率消耗降低,因此可知飛行器在剛開始起飛時所需推力與消耗功率最大,隨速度增加後遞減,最後到達一個穩定適合飛行的速度。

並列摘要


This is a study about the effect of wing stiffness on the systematic design of flapping flight, and is separated into three parts as followings. In the first part, we constructed a test platform of flapping flight, including modification of a six-component force/moment balance, a thermal (hot-wire) anemometry and high speed camera. Then the force/ moment, integration of the flow change frequency behind the wing, and the instant deflection of the wing can be all measured. In the second part, we referred the flexural stiffness of an insect wing and the morphology of a bat wing, and found the trend relationship between the wing stiffness and the flapping characteristics. High thrust occurred with highly-stiffened leading edge and high propulsion efficiency came up with a moderate flexural stiffness of the flapping wings. Besides, high efficiency of flapping appears when Strouhal number is large than 0.2. Finally, we designed and built up a flapping-aerial vehicle with 70cm in span, 5.8 in aspect ratio with the weight of 136g. The model was tested and has a successful 10-second flight in air. In the wind tunnel test, we found that the thrust and power consumption decreases with increasing cruising speed. It means that the maximum power consumption is at the beginning of the flight, and in the cruise speed will approach constant with decreasing thrust.

參考文獻


何仁揚. (2004). 拍撲式微飛行器之製作及其現地升力之量測研究. 淡江大學.
陳政宇. (2005). 蜻蜓翅膀的自然頻率與振形量測. 國立臺灣大學 
Ansari, S. A., Zbikowski, R., & Knowles, K. (2006). Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Progress in Aerospace Sciences, 42(2), 129-172.
Bao, L., Hu, J. S., Yu, Y. L., Cheng, P., Xu, B. Q., & Tong, B. G. (2006). Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Applied Mathematics and Mechanics-English Edition, 27(6), 741-748.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.

被引用紀錄


徐振貴(2008)。拍翼式微飛行器之設計、製造與測試整合〔博士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2008.00716
何承洲(2009)。微粒子影像測速儀應用於輪蟲運動的研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02259

延伸閱讀