透過您的圖書館登入
IP:3.133.161.153
  • 學位論文

嚴重急性呼吸道症候群冠狀病毒7a蛋白質與血紅素氧化酶結合參與病毒之致病機轉

Interaction between SARS-CoV 7a protein and heme oxygenase-1 involves in the viral pathogenesis

指導教授 : 張明富

摘要


嚴重急性呼吸道症候群相關之冠狀病毒 (severe acute respiratory syndrome associated coronavirus,SARS-CoV) 被證實與引起 SARS 之非典型肺炎有關,其致死率約為 10%。SARS-CoV 為一含有套膜之新型冠狀病毒,基因體為一正向的 RNA,長約 30,000 個核苷酸,具有 14 個 ORFs,其中包含8個組別特異性蛋白質(group-specific proteins),包括ORF 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b,這些蛋白質在不同組別的冠狀病毒中具有顯著的序列差異性,一般認為在致病機轉中扮演重要的角色。本實驗的研究對象是 SARS-CoV 7a 蛋白質,探討其與宿主細胞蛋白質的交互作用及其功能。 本實驗室欲探討 7a 致病的分子機制,利用高效率酵母菌功能性基因模組從 200 個跟細胞凋亡相關之蛋白質篩選出一個細胞因子heme oxygenase-1 (HO-1),其會與 7a 和 8a 產生交互作用。Heme oxygenase-1會催化 heme 代謝的速率決定步驟,最終產物為鐵離子、一氧化碳 (CO) 、以及膽紅素 (bilirubin) 。目前研究指出, HO-1在細胞當中主要是透過其產物 CO 扮演具有細胞保護的角色。為進一步確認 7a 和 8a 與 HO-1 的交互作用,首先利用免疫共沉澱的方式證明,在哺乳類動物細胞中 7a 的確會與 HO-1有交互作用,並利用雷射掃描共軛焦顯微鏡觀察到7a與HO-1在細胞中有colocalization的情形。此外,文獻指出7a會阻礙細胞週期的進行,使其停留在G0/G1階段,並且是透過抑制cyclin D3的表現而造成;為探討 7a 與 HO-1 的交互作用之生理意義,我們進行cyclin D3的 luciferase reporter assay,發現受到 HO-1 活化的 cyclin D3 promoter 的活性可以被 SARS-7a 所抑制。 經由 SARS-CoV 7a 與 8a 的序列比對發現,7a 與 8a 的 21-35胺基酸序列具有高度相似性,因此推測7a和8a可能是透過這段序列與 HO-1 結合。未來的工作將會釐清 7a、8a 對於 HO-1 酵素活性的影響。

並列摘要


Severe acute respiratory syndrome (SARS) is an atypical pneumonia caused by SARS-coronavirus (SARS-CoV). The overall mortality rate was about 10 %. SARS-CoV is an enveloped, positive single-stranded RNA virus with an RNA genome about 30,000 nucleotides in length, which encodes 14 open reading frames (ORFs). The genome contains eight group-specific open reading frames (ORFs):ORF 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b, which encode group-specific proteins with no known homologues. These accessory proteins are highly associated with the virulence and pathogenesis of SARS-CoV. The specific aim of this study is to understand the function and pathogenesis of SARS-CoV 7a. By performing high throughput yeast functional array analysis, our laboratory has identified heme oxygenase-1 (HO-1) as a SARS-CoV 7a-, and 8a-interacting protein. HO-1 is an enzyme which can catalyze heme metabolism and generally acts as a cytoprotective protein through its by-products, CO, Fe2+, and bilirubin. The interaction between SARS-CoV 7a and HO-1 protein was confirmed by co-immunoprecipitation. In addition, confocal microscopy demonstrated the colocalization of SARS-CoV 7a and HO-1. Furthermore, it is reported that SARS-CoV 7a blocks cell cycle at G0/G1 phase by inhibiting the expression of cyclin D3. In this study, luciferase reporter assay demonstrated that SARS-CoV 7a inhibited the up-regulation of cyclin D3 promoter activity mediated by HO-1. Alignment of SARS-CoV 7a and 8a amino acid sequences showed that the N-terminal 21-35 amino acid resideus of 7a and 8a have high similarity. Thus, it is possible that 7a and 8a interact with HO-1 through amino acid residues 21-35.

並列關鍵字

SARS SARS-CoV SARS-CoV 7a heme oxygenase-1 cell cycle cyclin D3

參考文獻


1. J. S. M. Peiris, Y. Guan and K. Y. Yuen. Severe acute respiratory syndrome. Nature Medicine supplement. Vol.10, s88-97 (2004)
3. M. Marra, S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, R. L. Roper. and S. J. M. Jones, The Genome Sequence of the SARS-Associated Coronavirus. Science. Vol. 300, 1399-1404 (2003)
5. T. Kuiken, R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim , A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris and A. D. Osterhaus. Newly Discovered Coronavirus as the Primary Cause of Severe Acute Respiratory Syndrome. Lancet. Vol. 362, 263-270 (2003)
6. S. R. Weiss, S. Navas-Martin. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews. Vol. 69, 635-664 (2005)
9. Y. Guan, , B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo, P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F. Shortridge, K. Y. Yuen, J. S. Peiris, and L. L. Poon. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. Vol. 302, 276-278 (2003)

被引用紀錄


陳奕穎(2010)。嚴重急性呼吸道症候群冠狀病毒棘蛋白質透過其受器ACE2訊息傳遞正調控細胞激素CCL2基因之分子機制〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.01586

延伸閱讀