本研究結合陽極氧化鋁模具製作及氣體輔助成型之技術,將陽極氧化鋁上的結構複製於PC塑膠薄膜上。陽極氧化鋁製作方式簡單、便宜;氣體輔助成型製程利用氣體等向、等壓的物理特性,可達到均勻分佈壓力。 本研究以40V與80V之外加電壓製作陽極氧化鋁模具,獲得間距為80nm和170nm 之奈米孔洞,而孔洞大小(10nm~100nm)可藉由擴孔時間或擴孔溫度來決定。使用氣體輔助壓印製程,調整塑膠材料於不同溫度及壓力下,控制塑膠均勻地充填進入模具孔洞,成功製造具有奈米結構於塑膠元件,其高度(50nm~570nm)亦可調整參數控制。 本實驗結果顯示,具有次微米結構其反射率明顯改善,氣體壓力為25kg/cm2、溫度為150℃,其複製之結構高度約為350nm在波長範圍為400nm~600nm時其反射率為3.16%。利用陽極氧化鋁當作PDMS翻製的模具,使PDMS於表面具有凸出的奈米結構,接觸角由114°增加至145°,具有表面疏水之效果。 結果證實,利用氣體輔助熱壓成型技術與陽極氧化鋁模具來製作抗反射元件是可行的。另外,次微米結構之高度可藉由製程參數來控制,獲得最佳的抗反射效果。
This paper reports the development of a gas-assisted hot embossing process using anodic aluminum oxide templates for fabricating nano-holes structures on polycarbonate (PC) film. In the gas-assisted hot embossing process, N¬2 is used as the pressing medium. The distribution of gas pressure is uniform, the process is advantageous to large-area imprint. The Si and glass-based materials can be used as embossing mold. The fabrication of AAO template is easy. In this thesis, the alumina membranes with 80nm and 170nm pitches were fabricated via a two-step anodization, employing 0.1 M oxalic acid as an electrolyte with an anodization voltage of 40 V and 80V. The pore diameter(10nm~100nm) can be controlled by adjusting time and temperature of pore enlargement. By using gas-assisted hot embossing process, the nanostructures can be uniformly fabricated onto the surface of polymer substrates. The filling height of nanostructure can be controlled by controlling the temperature and pressure. The results show that the reflection rate is significantly affected by height of submicron structures. The reflection rate of average 3.16% in the wavelength range from 400 to 600nm is the lowest. In this situation, the height is 350nm, which is fabricated under the processing parameter of 25kg/cm2 gas pressure and 150℃ temperature. The contact angle of PDMS mold, replicated from AAO template, is increased from 114°to 145°The results prove that the gas-assisted hot embossing process with AAO templates is a practicable method to fabricate submicron structures for AR applications in the visible spectral range. In addition, the submicron structures height with the best anti-reflection performance can be obtained by controlling the processing parameter.