透過您的圖書館登入
IP:18.119.253.2
  • 學位論文

耦合微環形共振器中的慢光傳輸

Slow Light Propagation in Coupled Microring Resonators

指導教授 : 薛文証
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要研究耦合微環形共振器的濾波及慢光效應,觀察不同結構設定下其穿透率和群延遲的變化趨勢。所探討的結構主要有兩種,第一種是週期結構串聯耦合微環形共振器,第二種是圖厄-莫爾斯結構的串聯耦合微環形共振器。在穿透率部分,可以歸納出三個重點,首先圖厄-莫爾斯結構相較於週期結構可以獲得更陡峭之穿透率峰,再者因為碎裂的能帶結構,消滅了微環形共振器瓶的現象,使得濾波品質向上提升,最後在任意的功率耦合係數或共振器大小比例下,都可以觀察到完美穿透的現象。在群延遲部分,發現隨著功率耦合係數的上升,會使得兩種結構在任意通帶的群延遲最大值下降,而共振器大小比例越懸殊時,週期結構在主要通帶的最大群延遲值會下降,在迷你通帶和圖厄-莫爾斯結構在任意通帶則上升。

並列摘要


In this thesis, Filtering and slow light properties of two structures are studied. One is series-coupled microring resonator using periodic structure, and the other is series-coupled microring resonator using Thue-Morse structure. Regarding transmittance, three important properties can be summarized. First, the Thue-Morse structure has sharper resonance peaks as compared with the periodic structure. Besides, the fragmented band structure of the Thue-Morse structure eliminates MRR bottle and enhances the quality of filtering. Last, resonance peaks with perfect transmission can be observed in arbitrary power coupling coefficient and the ratio of the circumference in the major-band or mini-band of the Thue-Morse structure. Concerning the group delay, when power coupling coefficient increases, the two structures have lower maximum value of group delay. With the ratio of the circumference of series-coupled microring resonator becomes larger, the maximum value of group delay of the periodic structure decreases in major-band, but increases in mini-band. As for the Thue-Morse structure, when the ratio becomes larger, the maximum value of group delay increases in both major-band and mini-band.

參考文獻


[1] B. A. Lengyel, Lasers: Generation of Light by Simulated Emisiion, Wiley, USA (1962).
[2] M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation, Elsevier, New York (1969).
[3] M. Nebeling and H. J. Thiele, Coarse Wavelength Division Multiplexing: Technologies and Applications, CRC Press, USA (2007).
[4] I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications, Springer, USA (2010).
[5] S. E. Miller and I. P. Kaminow, Optical Fiber Telecommunications II, Academic Press, California (1988).

延伸閱讀