透過您的圖書館登入
IP:3.144.33.41
  • 學位論文

整合電化學及表面電漿子共振之系統研究:以ATP生物連接子進行丙型干擾素檢測之驗證

Research and Development of Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance Interferometer based Integrated System: use ATP-biological linkers to detect IFN-gamma for platform verifications

指導教授 : 李世光
共同指導教授 : 吳光鐘(Kuang-Chong Wu)

摘要


肺結核是一種傳染性極強的疾病,全球的潛在患者佔全世界人口的三分之一。就目前而言潛伏性的結核病的檢測是經由通過刺激的 T 細胞來抓取血液中的肺結核抗原:丙型干擾素(Interferon-gama)來達成。 在本論文中開發了一種以拋物面鏡為設計的機構,具有量測表面電漿子共振技術(Surface Plasmon Resonance, SPR)、橢偏儀以及干涉是顯微鏡的功能,並以 SPR 為本研究光學量測的技術來分析抗體與抗原的反應。為了研究同一平台中不同生物檢測技術的交叉比較,本研究還加入了電化學(Electrochemical impedance spectroscopy, EIS)這個以量測電化學阻抗的方法。而生物晶片的表面藉由流道設計後,將表面官能化,以成為可與肺結核抗原鍵結的高檢測特異性表面,為了使機台校正速度快速及檢測時的準確性,動力學的設計也被包含在內,以確保實驗的重複性,藉由整合SPR即時檢測技術以及EIS阻抗分 析方法在同一實驗平台上,進行同步檢測並比較所得實驗結果。最後,更以EIS結果及新開發的光學檢測平台獲得的光學信號來作交叉校準。初步實驗結果表明,這個新開發完成,且具有進行準確性SPR和EIS測量性能的量測平台,的確可提供多種創新生醫檢測技術。

並列摘要


Tuberculosis is a highly contagious disease such that global latent patient can be as high as one third of the world population. Currently, latent tuberculosis was diagnosed by stimulating the T cells to produce the biomarker of tuberculosis, i.e., interferon-γ. In this thesis, we developed a paraboloidal mirror enabled surface plasmon resonance (SPR) interferometer that has the potential to also integrate ellipsometry, and interferometer to analyze the antibody and antigen reaction. To examine the feasibility of developing a platform for cross calibrating the performance and detection limit of various bio-detection techniques, electrochemical impedance spectroscopy (EIS) method was also implemented onto a biochip that can be incorporated into this newly developed platform. The microfluidic channel of the biochip was functionalized by coating the interferon-γ antibody so as to enhance the detection specificity. To facilitate the processing steps needed for using biochip to detect various antigen of vastly different concentrations, a kinematic mount was also developed to guarantee the biochip re-positioning accuracy whenever the biochip was removed and placed back for another round of detection. Before EIS can be utilized, SPR was also adopted to observe the real-time signals on the computer in order to analyze the success of each biochip processing steps such as functionalization, wash, etc. Finally, the EIS results and the optical signals obtained from the newly developed optical detection platform was cross-calibrated. Preliminary experimental results demonstrate the accuracy and performance of SPR and EIS measurement done at the newly integrated platform.

參考文獻


[29] 李舒昇, "以拋物面鏡為基礎之表面電漿共振儀研究生物晶片上分子反應介面之親和力," 博士論文,國立台灣大學應用力學研究所, 2004.
[37] 劉齡雅, "以熱泳效應提升電化學阻抗感測器靈敏度之研究與開發," 碩士,國立台灣大學工程科學及海洋工程學研究所, 2015.
[1] A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews, vol. 42, pp. 3184-3196, 2013.
[3] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
[4] J. Mitchell, "Small molecule immunosensing using surface plasmon resonance," Sensors, vol. 10, pp. 7323-7346, 2010.

延伸閱讀