透過您的圖書館登入
IP:3.17.175.21
  • 學位論文

異養硝化-好氧反硝化菌的篩選與其3D列印固定化之初探

Isolation of heterotrophic nitrifying - aerobic denitrifying bacteria and preliminary investigation of their immobilization using 3D printing

指導教授 : 于昌平

摘要


因爲人類科技的快速發展,水體污染的問題也更加嚴重。雖然污水處理的技術也在提高,但是廢水排放對於總氮的標準也逐漸嚴格,需要開發尋找更高效的脫氮工藝。 本研究使用檸檬酸三鈉爲單一碳源的培養基,與(NH4)2SO4或KNO3作爲硝化反硝化培養基的單一氮源,從而篩選異養硝化-好氧反硝菌。使用三家位置不同的污水廠的活性污泥爲原料,進行3周的馴化培養。最終篩選出了爲7株不同的菌,經過序列比對認爲他們可能是Oceanimonas smirnovii、Halomonas sp.、 Ralstonia insidiosa、Pseudomonas stutzeri、Pseudomonas sp.、Zobellella sp.、和Ochrobactrum anthropic。 通過實驗驗證認爲他們都同時具有異養硝化與好氧反硝化的功能。初始N濃度爲200 mg/L的培養基,48 h內,XH-4去除NH4+-N的效率最高可到達86.7%,FXH-1去除NO3--N的效率最高可到達37.3%。 經過多方因素考慮,選擇了XH-2和FXH-3菌株進行3D列印固定化,觀察微生物功能體內細菌的生長,與脫氮效果的發揮。通過3D列印技術固定化後的微生物功能體,質地柔軟,細菌可以在其中繼續繁殖,且可以保存一定時間,25天時表面會出現裂縫孔洞。雖然此固定化方法已初步證明可以獲得具有微生物功能的活性結構體,但是3D列印固定化菌株除氮的技術仍然需要更深入的研究以提高去除效率。

並列摘要


Because of the rapid development of human technology, the problem of water pollution has become more serious. Although the technology of sewage treatment is also improving, the standards for total nitrogen in wastewater discharge are gradually becoming stricter, and it is necessary to develop a more efficient denitrification process. In this study, trisodium citrate dihydrate was used as a single carbon source and (NH4)2SO4 or KNO3 was used as a single nitrogen source for the nitrification and denitrification medium to isolate heterotrophic nitrifying-aerobic denitrifying bacteria. The activated sludge from three sewage treatment plants in different locations was used as raw material inoculate for 3-week acclimation and enrichment. Finally, 7 different strains were isolated, they may be Oceanimonas smirnovii, Halomonas sp., Ralstonia insidiosa, Pseudomonas stutzeri, Pseudomonas sp., Zobellella sp., and Ochrobactrum anthropic. Through experimental verification, both of them have the function of heterotrophic nitrification and aerobic denitrification. In the medium with an initial N concentration of 200 mg/L, within 48 hours, the removal efficiency of NH4+-N by XH-2 can reach 86.7%, and the removal efficiency of NO3--N by FXH-3 can reach 37.3%. XH-2 and FXH-3 were chosed after consideration of multiple factors used for 3D printing immobilization, and observe the growth of bacteria in the microbial functional structures and the extent of nitrogen removal efficiency. The microbial functional structure immobilized by 3D printing technology is soft in texture, in which the bacteria can continue to reproduce, and can be preserved for a certain time. Cracks and holes will appear on the surface after 25 days. Although this immobilization method preliminarily proved to obtain active structures with microbial functions, this technology using 3D printing immobilization of strains to remove nitrogen still need further study to improve removal efficiency.

參考文獻


林育德. (2006). 紅樹林沉積物中脫氮細菌之研究. 臺灣大學海洋研究所學位論文, 1-78.
温东辉, 唐孝炎. (2003). 异养硝化及其在污水脱氮中的作用. 环境污染与防治(05), 283-285.
梁书诚, 赵敏, 卢磊, 赵丽艳. (2010). 好氧反硝化菌脱氮特性研究进展. 应用生态学报(06), 1581-1588.
陈昢圳, 王立刚, 王迎春, 李季, 丁伟, 任天志, et al. (2009). 异养硝化-好氧反硝化菌的筛选及脱氮性能的实验研究. 环境科学(12), 3614-3618.
李紫惠, 曹刚, 邵基伦, 黄郑郑, 莫测辉. (2016). 响应面优化好氧反硝化菌的硝化影响因子. 环境科学与技术, v.39(03), 26-32.

延伸閱讀