透過您的圖書館登入
IP:18.226.187.24
  • 學位論文

在具方向性氮化鎵孔洞結構內膠體量子點於表面電漿子耦合下發光與共振能量轉換行為

Emission and Resonance Energy Transfer Behaviors of Colloidal Quantum Dots in Oriented GaN Porous Structures under the Condition of Surface Plasmon Coupling

指導教授 : 楊志忠

摘要


我們將紅光量子點與綠光量子點和經化學合成不同表面電漿子共振波長的銀奈米顆粒填入具方向性氮化鎵孔洞結構內,另外也在表面上沉積不同表面電漿子共振波長的銀奈米顆粒來形成各種樣品。我們從不同偏振的螢光衰減時間以及螢光強度觀察到垂直與平行孔洞結構的偏振在量測結果的差異,以此觀察具方向性腔體效應增強表面電漿子耦合的效果,兩種偏振之間的螢光衰減率和螢光強度的差異大小取決於表面電漿子耦合強度,也與隨偏振而異的福斯特共振能量轉換有關。換句話說,在因腔體效應而產生更強的表面電漿子共振的偏振中,福斯特共振能量轉換效率可能增強也可能降低。

並列摘要


Based on oriented GaN porous structures, we fabricate various samples of different surface plasmon (SP) coupling conditions by inserting green-, red-emitting quantum dots (QDs), and synthesized Ag nanoparticles (NPs) of different SP resonance wavelengths into the pores, and depositing surface Ag NPs of different SP resonance wavelengths. From the results of polarization-dependent time-resolved and continuous photoluminescence (PL) measurements, we observe the effects of polarization-dependent scattering effect of the oriented porous structure enhanced SP coupling, leading to the different PL decay rates and intensities between the polarizations perpendicular and parallel to the pore extension direction. The differences of PL decay rate and intensity between the two polarizations rely on the SP coupling strength. They are also related to the polarization-dependent Förster resonance energy transfer (FRET) effect. In other words, in a polarization of stronger SP resonance due to a polarization-dependent scattering effect of the oriented porous structure, the FRET effect can be either enhanced or reduced, resulting in a different polarization-dependent intensity ratio of donor.

並列關鍵字

GaN Porous Structures

參考文獻


1. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22, A511-A520 (2014).
2. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504-32515 (2015).
3. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22, 3076-3080 (2010).
4. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8, 18189-18200 (2016).
5. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26, 23629-23640 (2018).

延伸閱讀