透過您的圖書館登入
IP:3.146.221.204
  • 學位論文

聚芴基共軛高分子在拉伸發光二極體元件之應用

Flexible Light-Emitting Diode Application of Polyfluorene-Based Conjugated Polymers

指導教授 : 童世煌
共同指導教授 : 佐藤敏文 郭霽慶(Chi-Ching Kuo)

摘要


本研究本論文主要突出三個方面:(1)新穎的彈性導電電極製備與柔性發光二極體應用◦ (2)簡易高亮度且多光色聚芴基元件之製備◦ (3)一鍋法合成聚芴基軟硬雙嵌鏈段共聚物與高量子效率之柔性按壓元件展示◦首先於第二章中,證明了銅/銀雙核殼層結構之奈米纖維膜電極具有良好彈性和導電性且可應用於柔性聚芴基發光二極體。接著於第三章中,展示了高導電與彈性聚氨酯奈米銀線電極優越穩定性,並成功展示於按壓元件上,其擁有相當高穩定性◦第四章提出聚芴基軟硬雙嵌鏈段共聚物具有展現良好拉伸性以及熒光性能的潛力,並可以簡易透過聚芴基混摻鈣鈦礦藉以螢光轉換效應達到多種光色變化。最後在第五章節中,開發出簡易的一鍋法合成,並設計出一系列的聚芴基共軛高分子,如: 聚(9,9-二-正己基-2,7-芴)-嵌段-聚(ε-癸内酯) (PFN18-b-PDLn),利用嵌段共聚物之特性,結合軟鏈段聚(ε-癸内酯)與硬鏈段聚(9,9-二-正己基-2,7-芴)之功能性,探討其不同比例下的柔性發光二極體元件性能,其外部量子效率是聚芴高分子的六倍,且元件可以承受來回0-20%的應變300次下,性能沒有明顯的下降。綜上論述,作者成功研發出新穎導電彈性電極與聚芴嵌段共聚物的一鍋法合成,並成功的展示此軟硬嵌段共聚物擁較高的潛力應用於發光二極體,不只解決了穿戴式元件的柔性與性能之問題,更大大提升了工業量產化的可能性,在這種便捷智能合成和優越元件性能條件下,相信未來在穿戴式電子元件及光電材料等相關領域,具相當大的發展潛力。

並列摘要


In conclusion, the author demonstrates the transparent and conductive electrodes (TCEs) based on copper/silver (Cu/Ag) core/shell nanofibers (NFs) and can be applied to the flexible polyfluorene (PF) light-emitting diodes (LEDs), thus demonstrating their practical utility, as shown in chapter 2. To solve the roughness problem of NFs electrode, another electrode based on polyurethane-silver nanowires silver nanowires (PU-AgNWs) is proposed and optimized for fabricating light-emissive touch-responsive devices (LETDs) in chapter 3. Considering the flexibility of emissive material, chapter 4 exhibits PF-based rod-coil BCPs have the potential to achieve high stretchability as well as favorable fluorescent properties for versatile applications that require outstanding optical properties. Chapter 5 describes the conjugated BCPs importance with robust stretchable wearable LED fabrication and the one-pot smart synthesis is anticipated to achieve impressive breakthroughs in forming diverse rod-coil BCPs and wearable electronic fabrication. The results obtained from the present investigation offers detailed insight and fundamental comprehension of improving flexible LED performance by using PF-based rod-coil BCPs. Therefore, the author believes that the present dissertation offers better guidance to the fabrication of the PF-based BCPs, while leads to further development of the highly stable and efficient LED based on the PF-based BCPs.

參考文獻


1. Sun, Y.; Wang, W.; Zhang, H.; Su, Q.; Wei, J.; Liu, P.; Chen, S.; Zhang, S., High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer. ACS Appl. Mater. Interfaces 2018, 10 (22), 18902-18909.
2. Kim, J.-H.; Han, C.-Y.; Lee, K.-H.; An, K.-S.; Song, W.; Kim, J.; Oh, M. S.; Do, Y. R.; Yang, H., Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 2015, 27 (1), 197-204.
3. Liang, X.; Ren, Y.; Bai, S.; Zhang, N.; Dai, X.; Wang, X.; He, H.; Jin, C.; Ye, Z.; Chen, Q., Colloidal indium-doped zinc oxide nanocrystals with tunable work function: rational synthesis and optoelectronic applications. Chem. Mater. 2014, 26 (17), 5169-5178.
4. Peng, H.; Wang, W.; Chen, S., Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris (N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer. IEEE Electron Device Lett. 2015, 36 (4), 369-371.
5. Sun, Q.; Subramanyam, G.; Dai, L.; Check, M.; Campbell, A.; Naik, R.; Grote, J.; Wang, Y., highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer. ACS Nano 2009, 3 (3), 737-743.

延伸閱讀