透過您的圖書館登入
IP:18.191.180.252
  • 學位論文

經驗模態分解中突波問題的解決架構

A solution framework for spike problem in empirical mode decomposition

指導教授 : 鄭士康
共同指導教授 : 羅孟宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


經驗模態分解是一個被廣為使用的時頻分析工具,然而,訊號中的雜訊干擾,例如突波,可能同時造成模態混合和模態分裂的問題,使得一個物理上有意義的成份被拆解成二個以上的本質模態函數。在此論文中,我們引用近期發展出的經驗模態分解的數學理論,提供突波問題造成模態混合和模態分裂的理論解釋,並且基於此理論基礎,提出了解決突波問題的架構——最小弧長條件。為了更穩健地將突波分離至原先不存在的本質模態函數中,我們加入了以弦波輔助的遮罩方法,而形成了「遮罩—最小弧長—經驗模態分解」。在論文中提供了此方法的數學理論和數值模擬,並且應用至真實世界的訊號,包括電流中的突波干擾、軸承震動訊號、睡眠腦波中的週期性交替模式和核心體溫的生理時鐘。更有甚者,我們將此方法應用在標準十二導心電圖上以分離P波的波形,並且證明由此P波波形所提取的特徵,可以用來偵測受測者是否有潛在的心房顫動。最後,我們將此方法延伸至單位階梯函數上,並且提出一個廣適性的演算法,來處理第N階導數為突波的訊號。

並列摘要


Empirical mode decomposition (EMD) is an extensively utilized tool in time-frequency analysis. However, disturbances such as impulse noise can result in both mode-mixing and mode-splitting effect, in which one physically meaningful component is split in two or more intrinsic mode functions (IMFs). In this work, we provide a mathematical explanation for the cause of mode-mixing and mode-splitting by spikes in EMD, and propose a novel method, the minimum arclength EMD (MA-EMD), to robustly decompose time series data with spikes. To further isolate the spike in a previously non-existed IMF, the masking-aided MA-EMD (MAMA-EMD) is provided. The mathematical foundations and limitations for these two methods are provided. The MAMA-EMD is utilized to deal with four real-world data including electrical current, vibration signals, cyclic alternating pattern in sleep EEG (Electroencephalography), and circadian of core body temperature. In addition, this work developed a tool for P-wave isolation in electrocardiogram (ECG) by the MAMA-EMD method, and showed that the P-wave related features can be used to identify potential atrial fibrillation patients. Finally, we extend our application to the Heaviside step function and propose a general algorithm for signals whose Nth order derivative is a spike function.

參考文獻


[1] Y.-H. Wang, H.-W. V. Young, and M.-T. Lo, "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, vol. 462, no. 300, pp. 1003-1017, 2016.
[2] N. Huang, Z. Shen, S. Long, M. Wu, and H. Shih, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998, doi: 10.1098/rspa.1998.0193.
[3] I. Daubechies, J. Lu, and H. T. Wu, "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool," Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243-261, 2011, doi: 10.1016/j.acha.2010.08.002.
[4] J. Gilles, "Empirical wavelet transform," IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3999-4010, 2013, doi: 10.1109/TSP.2013.2265222.
[5] C. Zhuang and P. Liao, "An Improved Empirical Wavelet Transform for Noisy and Non-Stationary Signal Processing," IEEE Access, vol. 8, pp. 24484-24494, 2020, doi: 10.1109/ACCESS.2020.2968851.

延伸閱讀