我們以商用漿料(Ti-Nanoxide T20-LALT, Solaronix)、(Ti-Nanoxide D20-LALT, Solaronix)製作多孔隙的二氧化鈦電極,以研製低溫製程染料敏化太陽能電池(dye-sensitized solar cells, DSSC)。藉由改變二氧化鈦電極厚度、設計光陷結構、製作堆疊式染料結構及電解液的選擇,以掃描式電子顯微鏡(SEM)、觸針式表面型態分析(Surface Profiling)、電流電壓特性(current-voltage characteristics)、頻譜響應(Spectrum response)等分析方式,探討上述不同的變因對於DSSC之影響,並提升DSSC的光電轉換效率。 在100 mW/cm2 (AM1.5)的模擬太陽光源下,以T20-LALT 為基礎的單層結構,效率可達5.8%。以T20-LALT及D20-LALT 為基礎的雙層結構,效率可達6.2%。以 T20-LALT及D20-LALT 為基礎的三層結構,最高效率可達6.8%,其中開路電壓(open circuit voltage)為0.67V,短路電流密度(short circuit current density)可達15.2mA/cm2,填充因子(fill factor)為0.66。
We used water-based solutions of commercially available gels (Ti-Nanoxide T20-LALT and Ti-Nanoxide D20-LALT) to prepare a porous photoelectrodes for the fabrication of low-temperature-processed dye-sensitized solar cells (DSSC). By varying the thickness and light-trapping structure of the titanium oxide electrodes, the tandem-like double-dye-layer structure and the composition of the electrolytes, we studied their influences on DSSC performances, by analyzing SEM, surface profiling, current-voltage characteristics and spectrum response. In the single-layer photoelectrode structure, the light-to-electric-energy conversion efficiency of solar cells based on T20-LALT is up to 5.8% at 1 sun illumination (AM1.5, 100 mW/cm2). In the double-layer photoeletrode structure, the light-to-electric-energy conversion efficiency of solar cells based on T20-LALT and D20-LALT is up to 6.2% at 1 sun illumination (AM1.5, 100 mW/cm2). In the triple-layer photoeletrode structure, the light-to-electric-energy conversion efficiency of solar cells based on T20-LALT and D20-LALT is up to 6.8% (Voc= 0.67 V, Jsc =15.2 mA/cm2, FF=0.66) at 1 sun illumination (AM1.5, 100 mW/cm2) .